Author: Ueda, H.
Paper Title Page
WEPWA021 A New DC Muon Beam Line at RCNP, Osaka University 2537
 
  • Y. Matsumoto, Y. Kohno, Y. Kuno, Y. Nakazawa, H. Sakamoto, A. Sato
    Osaka University, Osaka, Japan
  • M. Fukuda, K. Hatanaka, Y. Kawashima, S. Morinobu, K. Takahisa, H. Ueda
    RCNP, Osaka, Japan
  • M. Ieiri, M. Minakawa
    KEK, Tsukuba, Japan
 
  A new DC muon beam line has been constructed at RCNP, Osaka University. The MuSIC, which has the highest muon production efficiency using superconducting solenoidal magnets, has successfully demonstrated to provide a 2x108 [mu+/sec/micro A]. In 2014, the solenoid solenoidal magnets of the MuSIC were extended by a new beam line with normal conducting magnets. The new beamline consists of beam slits, quadrupole magnets, bending magnets and a spin rotator. This new beamline is designed for muon experiments such as μSR experiments and muonic X-ray measurements. In order to study the performance of the beams provided by the beamline , a beam test will be performed in December 2014. In this paper, I will present about a detail design of MuSIC including the new beamline and result of the beam test.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-WEPWA021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMA057 Development of HTS magnets 2905
 
  • K. Hatanaka, M. Fukuda, K. Kamakura, T. Saito, H. Ueda, Y. Yasuda, T. Yorita
    RCNP, Osaka, Japan
 
  We have been developing magnets utilizing high-temperature superconducting (HTS) wires for this decade. We built three model magnets, a mirror coil for an ECR ion source, a set of coils for a scanning magnet and a super-ferric dipole magnet to generate magnetic field of 3 T. They were excited with AC/pulse currents as well as DC currents. Recently we fabricated a cylindrical magnet for a practical use which polarizes ultracold neutrons (UCN). It consists of 10 double pancakes and the field strength at the center is higher than 3.5 T which is required to fully polarize 210 neV neutrons. It was successfully cooled and excited. The magnet was used to polarized UCN generated by the RCNP-KEK superthermal UCN source, One dipole magnet has been manufactured which is used as a switching magnet after the RCNP ring cyclotron and is excited by pulse currents. It becomes possible to deliver beams to two experimental halls by time sharing. Their designs and performances are presented in the talk.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-WEPMA057  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)