Author: Thurman-Keup, R.M.
Paper Title Page
MOPWI016 Development of a Versatile Bunch-length Monitor for Electron Beams at ASTA 1181
 
  • A.H. Lumpkin, D.J. Crawford, D.R. Edstrom, J. Ruan, J.K. Santucci, R.M. Thurman-Keup
    Fermilab, Batavia, Illinois, USA
 
  Funding: Work at Fermilab supported by Fermi Research Alliance, LLC under Contract No. DE-AC02- 07CH11359 with the United States Department of Energy.
The generation of bright electron beams at the ASTA/IOTA facility at Fermilab includes implementation of a versatile bunch-length monitor located after the 4-dipole chicane bunch compressor for electron beam energies of 20-50 MeV and integrated charges in excess of 10 nC. The station will include both a Hamamatsu C5680 synchroscan streak camera and a Martin-Puplett interferometer (MPI). An Al-coated Si screen will be used to generate both optical transition radiation (OTR) and coherent transition radiation (CTR) during the beam’s interaction with the screen. A chicane bypass beamline will allow the measurement of the initial bunch length at the same downstream beamline location using OTR and the streak camera. The UV component of the drive laser has previously been characterized with a Gaussian fit σ of 3.5 ps*, and the uncompressed electron beam is expected to be similar to this value at low charge per micropulse. In addition, OTR will be transported to the streak camera from the focal plane of the downstream spectrometer to provide an E-t distribution within the micropulse time scale. Commissioning of the system and initial results with beam will be presented as available.
*A.H. Lumpkin et al., Proceedings of FEL14, MOP021, Basel, Switzerland, www. JACoW.org.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-MOPWI016  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPJE080 First Beam and High-Gradient Cryomodule Commissioning Results of the Advanced Superconducting Test Accelerator at Fermilab 1831
 
  • D.J. Crawford, C.M. Baffes, D.R. Broemmelsiek, K. Carlson, B.E. Chase, E. Cullerton, J.S. Diamond, N. Eddy, D.R. Edstrom, E.R. Harms, A. Hocker, C.D. Joe, A.L. Klebaner, M.J. Kucera, J.R. Leibfritz, A.H. Lumpkin, J.N. Makara, S. Nagaitsev, O.A. Nezhevenko, D.J. Nicklaus, L.E. Nobrega, P. Piot, P.S. Prieto, J. Reid, J. Ruan, J.K. Santucci, W.M. Soyars, G. Stancari, D. Sun, R.M. Thurman-Keup, A. Valishev, A. Warner, S.J. Wesseln
    Fermilab, Batavia, Illinois, USA
 
  Funding: Operated by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the United States Department of Energy.
The advanced superconducting test accelerator at Fermilab has accelerated electrons to 20 MeV and, separately, the International Linear Collider (ILC) style 8-cavity cryomodule has achieved the ILC performance milestone of 31.5 MV/m per cavity. When fully completed, the accelerator will consist of a photoinjector, one ILC-type cryomodule, multiple accelerator R&D beamlines, and a downstream beamline to inject 300 MeV electrons into the Integrable Optics Test Accelerator (IOTA). We report on the results of first beam, the achievement of our cryomodule to ILC gradient specifications, and near-term future plans for the facility.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPJE080  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPWA072 Feasibility of Continuously Focused TeV/m Channeling Acceleration with CNT-Channel 2670
 
  • Y.-M. Shin
    Northern Illinois University, DeKalb, Illinois, USA
  • A.H. Lumpkin, V.D. Shiltsev, R.M. Thurman-Keup
    Fermilab, Batavia, Illinois, USA
 
  Funding: This work was supported by the DOE contract No. DEAC02-07CH11359 to the Fermi Research Alliance LLC.
Atomic channels in crystals are known to consist of 10 – 100 V/Å potential barriers capable of guiding and collimating a high energy beam and continuously focused acceleration with exceptionally high gradients (TeV/m)*,**,***. However, channels in natural crystals are only angstrom-size and physically vulnerable to high energy interactions. Carbon-based nano-crystals such as carbon-nanotubes (CNTs) and graphenes have a large degree of dimensional flexibility and thermo-mechanical strength, which could be suitable for channeling acceleration of MW beams. Nano-channels of the synthetic crystals can accept a few orders of magnitude larger phase-space volume of channeled particles with much higher thermal tolerance than natural crystals****. Our particle-in-cell simulations with 100 um long effective CNT model indicated that a beam-driven self-acceleration produces 1 – 2 % net energy gain in the quasi-linear regime (off-resonance beam-plasma coupling, np = 1000 nb) with ASTA 50 MeV injector beam parameters. This paper presents current status of CNT-channeling acceleration experiment planned at the Advanced Superconducting Test Accelerator (ASTA) in Fermilab.
* T. Tajima, PRL 59, 1440 (1987)
** P. Chen and R. Noble, slac-pub-4187
*** Y. M. Shin, APL 105, 114106 (2014)
**** Y.M. Shin, D. A. Still, and V. Shiltsev, Phys. Plasmas 20, 123106 (2013)
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-WEPWA072  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)