Author: Sun, D.
Paper Title Page
TUPJE080 First Beam and High-Gradient Cryomodule Commissioning Results of the Advanced Superconducting Test Accelerator at Fermilab 1831
 
  • D.J. Crawford, C.M. Baffes, D.R. Broemmelsiek, K. Carlson, B.E. Chase, E. Cullerton, J.S. Diamond, N. Eddy, D.R. Edstrom, E.R. Harms, A. Hocker, C.D. Joe, A.L. Klebaner, M.J. Kucera, J.R. Leibfritz, A.H. Lumpkin, J.N. Makara, S. Nagaitsev, O.A. Nezhevenko, D.J. Nicklaus, L.E. Nobrega, P. Piot, P.S. Prieto, J. Reid, J. Ruan, J.K. Santucci, W.M. Soyars, G. Stancari, D. Sun, R.M. Thurman-Keup, A. Valishev, A. Warner, S.J. Wesseln
    Fermilab, Batavia, Illinois, USA
 
  Funding: Operated by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the United States Department of Energy.
The advanced superconducting test accelerator at Fermilab has accelerated electrons to 20 MeV and, separately, the International Linear Collider (ILC) style 8-cavity cryomodule has achieved the ILC performance milestone of 31.5 MV/m per cavity. When fully completed, the accelerator will consist of a photoinjector, one ILC-type cryomodule, multiple accelerator R&D beamlines, and a downstream beamline to inject 300 MeV electrons into the Integrable Optics Test Accelerator (IOTA). We report on the results of first beam, the achievement of our cryomodule to ILC gradient specifications, and near-term future plans for the facility.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPJE080  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPTY037 A Perpendicular Biased 2nd Harmonic Cavity for the Fermilab Booster 3358
 
  • C.-Y. Tan, J.E. Dey, R.L. Madrak, W. Pellico, G.V. Romanov, D. Sun, I. Terechkine
    Fermilab, Batavia, Illinois, USA
 
  Funding: Operated by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the United States Department of Energy.
A perpendicular biased 2nd harmonic cavity is currently being designed for the Fermilab Booster. Its purpose cavity is to flatten the bucket at injection and thus change the longitudinal beam distribution so that space charge effects are decreased. It can also work at transition to help beam cross it. The choice of perpendicular biasing over parallel biasing is that the Q of the cavity is much higher and thus allows the accelerating voltage to be a factor of 2 higher than a similar parallel biased cavity. This cavity will also provide a higher accelerating voltage per meter than the present folded transmission line cavity. However, this type of cavity presents technical challenges that need to be addressed. The two major issues are cooling of the garnet material from the effects of the RF and the cavity itself from eddy current heating because of the 15 Hz bias field ramp. This paper will address the technical challenge of preventing the garnet from overheating.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-WEPTY037  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)