Paper | Title | Page |
---|---|---|
MOBB2 | Fabrication of TESLA-shape 9-cell Cavities at KEK for Studies on Mass-Production in Collaboration with Industries | 31 |
|
||
The construction of the new Center-of-Innovation (COI) buiding started at KEK from 2014 for the studies of mass-production of Superconducting-RF accelerators in collaboration with industries. The COI buiding is sitting next to the existing KEK-STF building and will include various Superconducting-RF facilities like clean-room for cavity-string assembly, cryomodule-assembly facility, cryogenic system, vertical-test facility, cryomodule-test facility, input-coupler processing facility, cavity Electro-Polishing (EP) facility, and control-room/office-rooms in the dimension of 80 m x 30 m. The purpose of this new SRF facilities is to establish a close collaboration between SRF researchers and industries in order to prepare for the upcoming large-scale future SRF project, like ILC. This article reports the fabricaion of four TESLA-shape 9-cell cavities for the commisioning of these new facilities. Details of the fabrication of these four cavities will be presented. | ||
![]() |
Slides MOBB2 [3.983 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-MOBB2 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPMA046 | Studies on Innovative Production methods of HOM Coupler for SRF 9-cell Cavity | 2869 |
|
||
Pure Nb as the material of SRF cavity bears hard workability in general. This is why both the inner and outer conductors of HOM coupler for 9-cell cavity have been conventionally produced by full machining, backward extrusion accompanied with annealing and so on. However, in the mass production of 9-cell cavities in ILC, further cost reduction is required. We produced both the inner and outer conductors of HOM coupler for 9-cell cavity in the advanced press forming methods aiming at cost reduction. Press forming of a pure Nb sheet for the outer conductor of HOM coupler was performed with fewer processes free from intermediate annealing and primary machining. For the inner conductor of HOM coupler, water jet cutting and press cold-forging of a plate was performed. The above advanced press forming methods showed favored results, leading to a possibility of simple mass-production of components and cost reduction. The vertical test on a 9-cell cavity with the press formed HOM couplers achieved 36 MV/m that is beyond ILC qualification. The R&D works are ongoing for further improvement. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-WEPMA046 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPMA053 | Multipactor Simulations in 325 MHz Superconducting Spoke Cavity for an Electron Accelerator | 2892 |
|
||
Funding: The work is supported by Photon and Quantum Basic Research Coordinated Development Program from the Ministry of Education, Culture, Sports, Science and Technology, Japan. In order to realize a compact industrial-use X-ray source with the laser-Compton scattering, a 325MHz superconducting spoke cavity for an electron accelerator operated at 4K is under development. After design-optimizations of the first cavity, we started fabrication process. In this paper, multipactor analyses carried out as parts of the design-optimization efforts are briefly summarized. Relations between cavity geometries and averaged secondary electron emission yield are discussed. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-WEPMA053 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPMA056 | Development of Superconducting Spoke Cavities for Laser Compton Scattered X-ray Sources | 2902 |
|
||
Funding: This study is supported by Photon and Quantum Basic Research Coordinated Development Program of MEXT, Japan. A 5-year research program on the development of superconducting spoke cavities for electron accelerators has been funded by MEXT, Japan since 2013. The purpose of our program is establishing design and fabrication processes of superconducting spoke cavity optimized for compact X-ray sources based on laser Compton scattering. The spoke cavity is expected to realize a compact industrial-use X-ray source with a reasonable cost and easy operation. We have chosen a cavity frequency at 325 MHz due to possible operation at 4 K and carried out cavity shape optimization in terms of electromagnetic and mechanical properties. Production of press-forming dies is also in progress. In this paper, we present overview and up-to-date status of the research program. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-WEPMA056 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |