Author: Rowan, S.
Paper Title Page
MOPTY059 First Operational Experience of DSL Based Analysis Modules for LHC Hardware Commissioning 1073
 
  • M. Zerlauth, C. Aguilera-Padilla, M. Audrain, Z. Charifoulline, M. Dragu, J.C. Garnier, R.M. Heil, M. Koza, K.H. Krol, T. Martins Ribeiro, R. Orlandi, S. Rowan, K.S. Stamos
    CERN, Geneva, Switzerland
 
  The Large Hadron Collider powering systems have been tested and commissioned before to start the second run of physics production. This commissioning used for the first time analysis modules defined directly by system experts in an english-like domain specific language. In these modules, the experts defined assertions that the data generated by the powering tests must verify in order for the test to pass. These modules concerned 4 tests executed for more than 1000 systems. They allowed experts to identify issues that were hidden behind the repetitive manual analysis performed during the previous campaigns. This paper describes this first operational experience of the analysis modules, as well as the replay of all the previous campaign with them. It will also present a critical point of view on these modules to identify their drawbacks and the next step to improve this system.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-MOPTY059  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPTY045 Interactions between Macroparticles and High-Energy Proton Beams 2112
 
  • S. Rowan, A. Apollonio, B. Auchmann, A. Lechner, O. Picha, W. Riegler, H. Schindler, R. Schmidt, F. Zimmermann
    CERN, Geneva, Switzerland
 
  A known threat to the availability of the LHC is the interaction of macroparticles (dust particles) with the LHC proton beam. At the foreseen beam energy of 6.5 TeV during Run 2, quench margins in the superconducting magnets will be 2-3 times lower, and beam losses due such interactions may result in magnet quenches. The study introduce an improved numerical model of such interactions, as well as Monte-Carlo simulations that give the probability that such events will result in a beam-dump during Run 2.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPTY045  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPHA017 Qualification of the Bypass Continuity of the Main Dipole Magnet Circuits of the LHC 3141
 
  • S. Rowan, B. Auchmann, K. Brodzinski, Z. Charifoulline, B.I. Panev, F. Rodriguez-Mateos, I. Romera, R. Schmidt, A.P. Siemko, J. Steckert, H. Thiesen, A.P. Verweij, G.P. Willering
    CERN, Geneva, Switzerland
  • H. Pfeffer
    Fermilab, Batavia, Illinois, USA
 
  The copper-stabilizer continuity measurement (CSCM) was devised in order to attain complete electrical qualification of all busbar joints, lyres, and the magnet bypass connections in the 13~kA circuits of the LHC. A CSCM is carried out at 20 K, i.e., just above the critical temperature, with resistive magnets. The circuit is then subject to an incremental series of controlled powering cycles, ultimately mimicking the decay from nominal current in the event of a magnet quench. A type test to prove the validity of such a procedure was carried out with success in April 2013, leading to the scheduling of a CSCM on all main dipole circuits up to and including 11.1 kA, i.e., the current equivalent of 6.5 TeV operation. This paper details the procedure, with respect to the type test, as well as the results and analyses of the LHC-wide qualification campaign.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-WEPHA017  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)