Paper | Title | Page |
---|---|---|
TUPTY053 | Roadmap towards High Accelerator Availability for the CERN HL-LHC Era | 2143 |
|
||
High Luminosity-LHC is the future upgrade of the LHC that aims at delivering an integrated luminosity of 3000 fb-1 over about 10 years of operation, starting from 2025. Significant modifications [1] will be implemented to accelerator systems, including new superconducting magnets, crab cavities, superconducting links, new collimators and absorbers based on advanced materials and design and additional cryo-plants. Due to the limit imposed by the number of simultaneous events at the experiments (pile-up) on peak luminosity, the latter will be levelled to 5*1034 cm-2s−1. The target integrated luminosity can only be achieved with a significant increase of the total available time for beam collisions compared to the 2012 LHC run, despite a beam current that is planned to double the nominal 0.58 A. Therefore one of the key figures of merit to take into account for system upgrades and new designs is their impact on the accelerator availability. In this paper the main factors affecting LHC availability will be discussed and predictions on the impact of future system upgrades on integrated luminosity presented. Requirements in terms of the maximum allowed number of dumps for the main contributing systems to LHC unavailability will be derived. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPTY053 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPTY040 | Quench Performance of the First Twin-aperture 11 T Dipole for LHC upgrades | 3361 |
|
||
Funding: *Work is supported by Fermi Research Alliance, LLC, under contract No. DE-AC02-07CH11359 with the U.S. Department of Energy and European Commission under FP7 project HiLumi LHC, GA no.284404 The LHC luminosity upgrade plan foresees installation of additional collimators in Dispersion Suppressor areas around point 7 and interaction regions 1, 2 and 5. The required space for these collimators could be provided by replacing some 15-m long 8.33 T NbTi LHC main dipoles (MB) with shorter 11 T Nb3Sn dipoles (MBH) compatible with the LHC lattice and main systems. FNAL and CERN magnet groups are developing a 5.5-m long twin-aperture dipole prototype with the nominal field of 11 T at the LHC nominal current of 11.85 kA suitable for installation in the LHC. Two of these magnets with a collimator in between will replace one MB dipole. The single-aperture 2-m long dipole demonstrator and two 1-m long dipole models have been assembled and tested at FNAL in 2012-2014. The 1 m long collared coils were then assembled into the first twin-aperture Nb3Sn demonstrator dipole and tested. This paper reports test results of the first twin-aperture Nb3Sn dipole model focusing on magnet training, ramp rate sensitivity and temperature dependence of the magnet quench current. The twin-aperture dipole quench performance is compared with the data for the single-aperture models. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-WEPTY040 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |