Author: Rogers, C.T.
Paper Title Page
MOPJE077 Progress on Simulation of Fixed Field Alternating Gradient Accelerators 495
 
  • S.L. Sheehy
    JAI, Oxford, United Kingdom
  • A. Adelmann
    PSI, Villigen PSI, Switzerland
  • M. Haj Tahar, F. Méot
    BNL, Upton, Long Island, New York, USA
  • Y. Ishi, Y. Kuriyama, Y. Mori, M. Sakamoto, T. Uesugi
    Kyoto University, Research Reactor Institute, Osaka, Japan
  • D.J. Kelliher, S. Machida, C.R. Prior, C.T. Rogers
    STFC/RAL/ASTeC, Chilton, Didcot, Oxon, United Kingdom
 
  Fixed Field Alternating Gradient accelerators have been realised in recent decades thanks partly to computational power, enabling detailed design and simulation prior to construction. We review the specific challenges of these machines and the range of different codes used to model them including ZGOUBI, OPAL and a number of in-house codes from different institutes. The current status of benchmarking between codes is presented and compared to the results of recent characterisation experiments with a 150 MeV FFAG at KURRI in Japan. Finally, we outline plans toward ever more realistic simulations including space charge, material interactions and more detailed models of various components.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-MOPJE077  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPF129 The MICE Demonstration of Lonization Cooling 4023
 
  • J. Pasternak, C. Hunt, J.-B. Lagrange, K.R. Long
    Imperial College of Science and Technology, Department of Physics, London, United Kingdom
  • V. Blackmore
    Imperial College of Science and Technology, London, United Kingdom
  • N.A. Collomb
    STFC/DL, Daresbury, Warrington, Cheshire, United Kingdom
  • V.C. Palladino
    INFN-Napoli, Napoli, Italy
  • R. Preece, J.S. Tarrant
    STFC/RAL, Chilton, Didcot, Oxon, United Kingdom
  • C.T. Rogers
    STFC/RAL/ASTeC, Chilton, Didcot, Oxon, United Kingdom
  • P. Snopok
    Fermilab, Batavia, Illinois, USA
 
  Funding: SFTC, DOE, NSF, INFN, CHIPP and more
Muon beams of low emittance provide the basis for the intense, well-characterised neutrino beams necessary to elucidate the physics of flavour at the Neutrino Factory and to provide lepton-antilepton collisions at energies of up to several TeV at the Muon Collider. The International Muon Ionization Cooling Experiment (MICE) will demonstrate ionization cooling, the technique by which it is proposed to reduce the phase-space volume occupied by the muon beam at such facilities. In an ionization-cooling channel, the muon beam passes through a material (the absorber) in which it loses energy. The energy lost is then replaced using RF cavities. The combined effect of energy loss and re-acceleration is to reduce the transverse emittance of the beam (transverse cooling). A major revision of the scope of the project was carried out over the summer of 2014. The revised project plan, which has received the formal endorsement of the international MICE Project Board and the international MICE Funding Agency Committee, will deliver a demonstration of ionization cooling by September 2017. In the revised configuration a central lithium-hydride absorber provides the cooling effect. The magnetic lattice is provided by the two superconducting focus coils and acceleration is provided by two 201 MHz single-cavity modules. The phase space of the muons entering and leaving the cooling cell will be measured by two solenoidal spectrometers. All the superconducting magnets for the ionization cooling demonstration are available at the Rutherford Appleton Laboratory and the first single-cavity prototype is under test in the MuCool Test Area at Fermilab. The design of the cooling demonstration experiment will be described together with a summary of the performance of each of its components. The cooling performance of the revised configuration will also be presented.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-THPF129  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)