Author: Plum, M.A.
Paper Title Page
MOPHA013 Superconducting Radio Frequency Cavity Degradation Due to Errant Beam 805
 
  • C.C. Peters, D. Curry, G.D. Johns
    ORNL RAD, Oak Ridge, Tennessee, USA
  • A.V. Aleksandrov, W. Blokland, M.T. Crofford, C. Deibele, G.W. Dodson, J. Galambos, T.A. Justice, S.-H. Kim, T.A. Pelaia II, M.A. Plum, A.P. Shishlo
    ORNL, Oak Ridge, Tennessee, USA
 
  Funding: ORNL is managed by UT-Battelle, LLC, under contract DE-AC05- 00OR22725 for the U.S. Department of Energy.
In 2009, the Superconducting Radio Frequency (SRF) cavities at the Spallation Neutron Source (SNS) began to experience significant operational degradation [1]. The source of the degradation was found to be repeated striking of cavity surfaces with errant beam pulses. The Machine Protection System (MPS) was designed to turn the beam off during a fault condition in less than 20 μseconds [2] as these errant beam pulses were not unexpected. Unfortunately an improperly operating MPS was not turning off the beam within the designed 20 μseconds, and the SRF cavities were being damaged. The MPS issues were corrected, and the SRF performance was restored with cavity thermal cycling and RF processing. However, the SRF cavity performance has continued to degrade, though at a reduced rate compared to 2009. This paper will detail further study of errant beam frequency, amount lost per event, causes, and the corrective actions imposed since the initial event.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-MOPHA013  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPWI032 Analysis of Primary Stripper Foils at SNS by an Electron Beam Foil Test Stand 1230
 
  • E.P. Barrowclough, C.S. Feigerle
    University of Tennessee, Knoxville, Tennessee, USA
  • C.F. Luck, M.A. Plum, R.W. Shaw, L.L. Wilson
    ORNL, Oak Ridge, Tennessee, USA
 
  Funding: ORNL/SNS is managed by UT-Battelle, LLC, for the U.S. Department of Energy under contract DE-AC05-00OR22725.
Diamond foils are used at the Spallation Neutron Source (SNS) as the primary strippers of hydride ions. A nanocrystalline diamond film, typically 17x45 mm with an aerial density of 0.35 mg/cm2, is deposited on a corrugated silicon substrate by plasma-assisted chemical vapor deposition. After growth, 30 mm of the silicon substrate is etched away, leaving a freestanding diamond foil with a silicon handle that can be inserted into SNS for operation. An electron beam test facility was constructed to study stripper foil degradation and impact on foil lifetime. The electron beam capabilities include: current up to 5 mA, focused spot size of 0.30 mm2, and rastering in the x- and y-directions. A 30 keV and 1.6 mA/mm2 electron beam deposits the same power density on a diamond foil as a 1.4 MW beam on SNS target. Rastering of the electron beam can expose a similar area of the foil as SNS beams. Experiments were conducted using the foil test stand to study: foil flutter and lifetime; effects of corrugation patterns, aerial densities, crystal size (micro vs. nano), and boron doping; temperature distributions and film emissivity; and conversion rate of nanocrystalline diamond into graphite.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-MOPWI032  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)