Author: Pikin, A.I.
Paper Title Page
WEPJE023 Cathode Performance during Two Beam Operation of the High Current High Polarization Electron Gun for eRHIC 2720
 
  • O.H. Rahman
    Stony Brook University, Stony Brook, USA
  • M.A. Ackeret, J.R. Pietz
    Transfer Engineering and Manufacturing, Inc, Fremont, California, USA
  • I. Ben-Zvi, C. Degen, D.M. Gassner, R.F. Lambiase, A.I. Pikin, T. Rao, B. Sheehy, J. Skaritka, E. Wang
    BNL, Upton, Long Island, New York, USA
  • E. Dobrin, R.C. Miller, K.A. Thompson, C. Yeckel
    Stangenes Industries, Palo Alto, California, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
Two electron beams from two activated bulk GaAs photocathodes were successfully combined during the recent beam test of the High Current High Polarization Electron gun for eRHIC. The beam test took place at Stangenes Industries in Palo Alto, CA, where the cathodes were placed in radially opposite locations inside the high voltage shroud. No significant cross talking between the cathodes were found for the pertinent vacuum and low average current operation, which is very promising towards combining multiple beams for higher average current. This paper describes the cathode preparation, transport and cathode performance in the gun for the combining test, including the QE and lifetimes of the photocathodes at various steps of the experiment.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-WEPJE023  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPJE033 The Progress of Funnelling Gun High Voltage Condition and Beam Test 2735
 
  • E. Wang, I. Ben-Zvi, D.M. Gassner, R.F. Lambiase, W. Meng, A.I. Pikin, T. Rao, B. Sheehy, J. Skaritka
    BNL, Upton, Long Island, New York, USA
  • M.A. Ackeret, J.R. Pietz
    Transfer Engineering and Manufacturing, Inc, Fremont, California, USA
  • E. Dobrin, R.C. Miller, K.A. Thompson, C. Yeckel
    Stangenes Industries, Palo Alto, California, USA
  • O.H. Rahman
    Stony Brook University, Stony Brook, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
A prototype of a high average current polarized electron funneling gun as an eRHIC injector has been built at BNL. The gun was assembled and tested at Stangenes Incorporated. Two beams were generated from GaAs photocathodes and combined by a switched combiner field. We observed the combined beams on a YAG crystal and measured the photocurrent by a Faraday cup. The gun has been shipped to Stony Brook University and is being tested there. In this paper we will describe the major components of the gun and recent beam test results. High voltage conditioning is discussed as well.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-WEPJE033  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPF046 Operation of the RHIC Injector Chain with Ions from EBIS 3804
 
  • C.J. Gardner, J.G. Alessi, E.N. Beebe, I. Blackler, M. Blaskiewicz, J.M. Brennan, K.A. Brown, J.J. Butler, C. Carlson, W. Fischer, D.M. Gassner, D. Goldberg, T. Hayes, H. Huang, P.F. Ingrassia, J.P. Jamilkowski, N.A. Kling, J.S. Laster, D. Maffei, M. Mapes, I. Marneris, G.J. Marr, A. Marusic, D.R. McCafferty, K. Mernick, M.G. Minty, J. Morris, C. Naylor, S. Nemesure, S. Perez, A.I. Pikin, D. Raparia, T. Roser, P. Sampson, J. Sandberg, V. Schoefer, F. Severino, T.C. Shrey, K.S. Smith, D. Steski, P. Thieberger, J.E. Tuozzolo, B. Van Kuik, A. Zaltsman, K. Zeno, W. Zhang
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
Since 2012 gold and all other ions for the RHIC injector chain have been provided by an Electron Beam Ion Source (EBIS). The source is followed by an RFQ, a short Linac, and a 30 m transport line. These components replace the Tandem van de Graaff and associated 840 m transfer line. They provide ions at 2 MeV per nucleon (kinetic energy) for injection into the AGS Booster. The setup and operation of Booster and AGS with various ions from the new source are reviewed.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-THPF046  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPF059 RHIC Electron Lenses Upgrades 3830
 
  • X. Gu, Z. Altinbas, S. Binello, D. Bruno, M.R. Costanzo, K.A. Drees, W. Fischer, D.M. Gassner, M. Harvey, J. Hock, K. Hock, Y. Luo, A. Marusic, K. Mernick, C. Mi, R.J. Michnoff, T.A. Miller, M.G. Minty, A.I. Pikin, G. Robert-Demolaize, T. Samms, V. Schoefer, T.C. Shrey, Y. Tan, R. Than, P. Thieberger
    BNL, Upton, Long Island, New York, USA
  • S.M. White
    ESRF, Grenoble, France
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
In the Relativistic Heavy Ion Collider (RHIC) 100 GeV polarized proton run in 2015[1], two electron lenses [2] were used for the first time to partially compensate for the head-on beam-beam effect. Here, we describe the design of the current electron lens, detailing the hardware modifications made after the 2014 commissioning run with heavy ions. A new electron gun with 15-mm diameter cathode is characterized. The electron beam transverse profile was measured using a YAG screen and fitted with a Gaussian distribution. During operation, the overlap of the electron and proton beams was achieved using the electron backscattering detector in conjunction with an automated orbit control program.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-THPF059  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)