Paper | Title | Page |
---|---|---|
MOPWA006 | Core-Halo Limit as an Indicator of High Intensity Beam Internal Dynamics | 86 |
|
||
The dynamics of high-intensity beams is mainly governed by their internal space charge forces. These forces induce emittance growth and halo generation. They contribute to shape the beam density profile. As a consequence, a careful analysis of this profile can help revealing the internal dynamics of the beam. This paper recalls the precise core-halo limit determination proposed earlier *, then studies its behavior through a wide range of beam profiles and finally shows its relevance as an indicator of the limit separating the two specific space charge field regimes of the core and the halo.
* P. A. P. Nghiem et al., Appl. Phys. Lett. 104, 074109 (2014) |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-MOPWA006 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPWA007 | The SARAF-LINAC Beam Dynamics | 89 |
|
||
SNRC and CEA collaborate to the upgrade of the SARAF Accelerator to 5 mA CW 40 MeV deuteron and proton beams (Phase 2). This paper presents the beam dynamics in the reference design of the SARAF-LINAC (from the 4 m long 176 MHz RFQ to the HWR Superconducting linac’s end). The beam losses, mostly in longitudinal direction, estimated from error studies, are compared with acceptable losses defined for hands-on maintenance. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-MOPWA007 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPWA008 | Status of TraceWin Code | 92 |
|
||
Well known in the community of high-intensity linear accelerators, the transport code TraceWin * is able to simulate a beam from the source to the target using either simple linear model or multiparticle simulations including 2D or 3D space-charge. Continuously developed at CEA Saclay since 15 years, it is today the reference code for projects such IFMIF, ESS, MYRRHA, SPIRAL2, IPHI … The accuracy of his predictions associated with an original and powerful GUI and its numerous features have made its success, with a community of 200 users worldwide. It is now used on a larger perimeter that its initial skills. The aim of this paper is to summarize the TraceWin capabilities, including implemented last ones.
* http://irfu.cea.fr/Sacm/logiciels/ |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-MOPWA008 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPF005 | The SARAF-LINAC Project for SARAF-Phase 2 | 3683 |
|
||
SNRC and CEA collaborate to the upgrade of the SARAF Accelerator to 5 mA CW 40 MeV deuteron and proton beams (Phase 2). This paper presents the reference design of the SARAF-LINAC Project including a four-vane 176 MHz RFQ, a MEBT and a superconducting linac made of four five-meter cryomodules housing 26 superconducting HWR cavities and 20 superconducting solenoids. The first two identical cryomodules house low-beta (βopt = 0.091), 280 mm long (flange to flange), 176 MHz HWR cavities, the two identical last cryomodules house high-beta (βopt = 0.181), 410 mm long, 176 MHz, HWR cavities. The beam is focused with superconducting solenoids located between cavities housing steering coils. A BPM is placed upstream each solenoid. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-THPF005 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |