Paper |
Title |
Page |
WEPHA017 |
Qualification of the Bypass Continuity of the Main Dipole Magnet Circuits of the LHC |
3141 |
|
- S. Rowan, B. Auchmann, K. Brodzinski, Z. Charifoulline, B.I. Panev, F. Rodriguez-Mateos, I. Romera, R. Schmidt, A.P. Siemko, J. Steckert, H. Thiesen, A.P. Verweij, G.P. Willering
CERN, Geneva, Switzerland
- H. Pfeffer
Fermilab, Batavia, Illinois, USA
|
|
|
The copper-stabilizer continuity measurement (CSCM) was devised in order to attain complete electrical qualification of all busbar joints, lyres, and the magnet bypass connections in the 13~kA circuits of the LHC. A CSCM is carried out at 20 K, i.e., just above the critical temperature, with resistive magnets. The circuit is then subject to an incremental series of controlled powering cycles, ultimately mimicking the decay from nominal current in the event of a magnet quench. A type test to prove the validity of such a procedure was carried out with success in April 2013, leading to the scheduling of a CSCM on all main dipole circuits up to and including 11.1 kA, i.e., the current equivalent of 6.5 TeV operation. This paper details the procedure, with respect to the type test, as well as the results and analyses of the LHC-wide qualification campaign.
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-IPAC2015-WEPHA017
|
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|
WEPTY020 |
Design of a Marx-Topology Modulator for FNAL Linac |
3306 |
|
- T.A. Butler, F.G. Garcia, M.R. Kufer, H. Pfeffer, D. Wolff
Fermilab, Batavia, Illinois, USA
|
|
|
The Fermilab Proton Improvement Plan (PIP) was formed in 2011 to address important and necessary upgrades to the Proton Source machines (Injector line, Linac and Booster). The goal is to increase the proton flux by doubling the Booster beam cycle rate while maintaining the same intensity per cycle, the same uptime, and the same residual activation on the accelerating structures. For Linac, the main focus within PIP is to address reliability. One of the main tasks is to replace the present hard-tube modulator used on the main 200MHz RF system. Plans to replace this high power system with a Marx-topology modulator, capable of providing the required waveform shaping to stable the accelerating gradient and compensate for beam loading, will be presented along with development data from the prototype unit.
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-IPAC2015-WEPTY020
|
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|