Paper | Title | Page |
---|---|---|
TUXB2 | Upgrade of the Unilac for Fair | 1281 |
|
||
The UNIversal Linear Accelerator (UNILAC) at GSI serves as injector for all ion species from protons to uranium since four decades. Its 108 MHz Alvarez type DTL providing acceleration from 1.4 MeV/u to 11.4 MeV/u has suffered from material fatigue. The DTL will be replaced by a completely new section with almost same design parameters, i.e. pulsed current of up to 15 mA of 238U28+ at 11.4 MeV/u. A dedicated terminal & LEBT for operation with 238U4+ is currently constructed. The uranium sources need to be upgraded in order to provide increased beam brilliances and for operation at 3 Hz. In parallel a 70 MeV / 70 mA proton linac based on H-mode cavities is under design and construction. This contribution will also give a brief summary of the overall status of the FAIR project. | ||
![]() |
Slides TUXB2 [4.634 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUXB2 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPF025 | Beam Dynamics for the SC CW Heavy Ion LINAC at GSI | 3742 |
|
||
Funding: Work supported by BMBF contr. No. 05P12RFRBL For future experiments with heavy ions near the coulomb barrier within the SHE (super-heavy elements) research project a multi-stage R&D program of GSI, HIM and IAP is currently in progress*. It aims at developing a superconducting (sc) continuous wave (cw) LINAC with multiple CH cavities as key components downstream the High Charge Injector (HLI) at GSI. The beam dynamics concept is based on EQUUS (equidistant multigap structure) constant-beta cavities. Advantages of its periodicity are a high simulation accuracy, easy manufacturing and tuning with minimized costs as well as a straightforward energy variation. The next milestone will be a full performance beam test of the first LINAC section, comprising two solenoids and a 15-gap CH cavity inside a cryostat (Demonstrator). *W. Barth et al., ‘‘Further R&D for a new Superconducting cw Heavy Ion LINAC@GSI'', THPME004, IPAC'14, Dresden, Germany (2014) |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-THPF025 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |