Paper | Title | Page |
---|---|---|
MOPWA036 | Status of Injection Studies into the Figure-8 Storage Ring | 187 |
|
||
The ongoing investigations on the design of the Figure-8 Storage Ring* at Frankfurt University focus on the beam injection. The research includes simulations as well as a scaled down experiment. The studies for an optimized adiabatic magnetic injection channel, starting from a moderate magnetic field up to a maximum of 6 Tesla, with a realistic field model of toroidal coils due to beam dynamics with space charge will be shown. For the envisaged ExB kicker system the simulations deal with beam potential constraints and a multi-turn injection concept in combination with an adiabatic magnetic compression. To investigate the concept of the beam injection into a toroidal magnetic field, a scaled down room temperature experiment is implemented at the university. It is composed of two 30 degree toroidal segments, two volume ion sources, two solenoids and two different types of beam detectors. The experiment is used to investigate the beam transport and dynamics of the laterally injected and “circulating” beam through the magnetic configuration. To set up the injection experiment, theoretical calculations and beam simulations with bender** are used.
* M. Droba et al., Proc. of IPAC'14, Dresden, Germany, TUPRO045 ** D. Noll, M. Droba, O. Meusel, U. Ratzinger, K. Schulte, C.Wiesner, Proc. of HB2014, East Lansing, USA, WEO4LR02 |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-MOPWA036 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPF024 | LEBT Dynamics and RFQ Injection | 3739 |
|
||
The Low Energy Beam Transport (LEBT) section at the accelerator-driven neutron source FRANZ* consists of four solenoids, two of which match the primary proton beam into the chopper. The remaining two solenoids are intended to prepare the beam for injection into the RFQ. In the first commissioning phase, the LEBT successfully transported a 14 keV He beam at low intensities**. In the current commissioning phase, the beam energy is increased to the RFQ injection energy of 120 keV. In the upcoming step, the intensity will be increased from 2 mA to 50 mA. Beam dynamics calculations include effects of different source emittances, position and angle offsets and the effects of space charge compensation levels. In addition, the behavior of the undesired hydrogen fractions, H2+ and H3+, and their influence on the performance within the RFQ is simulated.
* Meusel, O., et al. "FRANZ–Accelerator Test Bench And Neutron Source", MO3A03, LINAC 2012. ** Wiesner, C., et al. "Chopping High-Intensity Ion Beams at FRANZ", WEIOB01, LINAC 2014. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-THPF024 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |