Author: Munoz, M.     [Muñoz, M.]
Paper Title Page
MOPWI050 Open XAL Status Report 2015 1270
 
  • T.A. Pelaia II, C.K. Allen, A.P. Shishlo, A.P. Zhukov
    ORNL, Oak Ridge, Tennessee, USA
  • Y.-C. Chao, C. Gong, F.W. Jones, R. Newhouse
    TRIUMF, Vancouver, Canada
  • P. Chu, D.G. Maxwell, Y. Zhang
    FRIB, East Lansing, Michigan, USA
  • R. Fearn, L. Fernández, E. Laface, M. Muñoz
    ESS, Lund, Sweden
  • J.M. Freed
    University of South Carolina, Columbia, USA
  • P. Gillette, P. Laurent, G. Normand
    GANIL, Caen, France
  • H.R. Hale
    University of Tennessee, Knoxville, USA
  • Y. Li
    IHEP, Beijing, People's Republic of China
  • I. List, M. Pavleski
    Cosylab, Ljubljana, Slovenia
  • P. Scruggs
    East Tennessee State University, Johnson City, USA
 
  Funding: ORNL/SNS is managed by UT-Battelle, LLC, for the U.S. Department of Energy under contract DE-AC05-00OR22725
Open XAL is an accelerator physics software platform developed in collaboration among several facilities around the world. The Open XAL collaboration was formed in 2010 to port, improve and extend the successful XAL platform used at the Spallation Neutron Source for use in the broader accelerator community and to establish it as the standard platform for accelerator physics software. The site-independent core is complete, active applications have been ported, and now we are in the process of verification and transitioning to using Open XAL in production. This paper will present the current status and a roadmap for this project.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-MOPWI050  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPF092 European Spallation Source Lattice Design Status 3911
 
  • Y.I. Levinsen
    CERN, Geneva, Switzerland
  • H. Danared, R. De Prisco, M. Eshraqi, R. Miyamoto, M. Muñoz, A. Ponton, E. Sargsyan
    ESS, Lund, Sweden
  • S.P. Møller, H.D. Thomsen
    ISA, Aarhus, Denmark
 
  The European Spallation Source will offer an unprecedented beam power for spallation sources of 5 MW. The accelerator will deliver a proton beam of 62.5 mA peak current and 2.0 GeV onto the spallation target. Since the technical design report (TDR) was published in 2013, work has continued to further optimize the accelerator design. We report on the advancements in lattice design optimizations after the TDR to improve performance and flexibility, and reduce cost of the ESS accelerator.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-THPF092  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)