Author: Mavric, U.     [Mavrič, U.]
Paper Title Page
MOPHA026 Present and Future Optical-to-Microwave Synchronization Systems at REGAE Facility for Electron Diffraction and Plasma Acceleration Experiments 833
 
  • M. Titberidze, F.J. Grüner, A.R. Maier, B. Zeitler
    CFEL, Hamburg, Germany
  • S.W. Epp
    MPSD, Hamburg, Germany
  • M. Felber, K. Flöttmann, T. Lamb, U. Mavrič, J.M. Müller, H. Schlarb, C. Sydlo
    DESY, Hamburg, Germany
  • F.J. Grüner, A.R. Maier, M. Titberidze
    Uni HH, Hamburg, Germany
  • E. Janas
    Warsaw University of Technology, Institute of Electronic Systems, Warsaw, Poland
 
  Relativistic Electron Gun for Atomic Explorations (REGAE) is a Radio Frequency (RF) driven linear accelerator. It uses frequency tripled short photon pulses (~ 35 fs) from the Titanium Sapphire (Ti:Sa.) Laser system in order to generate electron bunches from the photo-cathode. The electron bunches are accelerated up to ~ 5 MeV kinetic energy and compressed down to sub-10 fs using the so called ballistic bunching technique. REGAE currently is used for electron diffraction experiments (by Prof. R.J.D. Miller's Group). In near future within the collaboration of Laboratory for Laser- and beam-driven plasma Acceleration (LAOLA), REGAE will also be employed to externally inject electron bunches into laser driven linear plasma waves. Both experiments require very precise synchronization (sub-50 fs) of the photo-injector laser and RF reference. In this paper we present experimental results of the current and new optical to microwave synchronization systems in comparison. We also address some of the issues related to the current system and give an upper limit in terms of its long-term performance.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-MOPHA026  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPHA028 Operation of Normal Conducting RF Guns with MicroTCA.4 841
 
  • M. Hoffmann, V. Ayvazyan, J. Branlard, Ł. Butkowski, M.K. Grecki, U. Mavrič, M. Omet, S. Pfeiffer, H. Schlarb, Ch. Schmidt
    DESY, Hamburg, Germany
  • W. Fornal, R. Rybaniec
    Warsaw University of Technology, Institute of Electronic Systems, Warsaw, Poland
  • A. Piotrowski
    FastLogic Sp. z o.o., Łódź, Poland
 
  During the last half year, the MicroTCA.4 based single cavity LLRF control system was installed and commissioned at several normal conducting facilities at DESY (FLASH RF gun, REGAE, PITZ RF gun, and XFEL RF gun). First tests during the last year show promising results in optimizing the system for high speed digital LLRF feedbacks, i.e. reducing system latency, increasing the internal controller processing speed, testing new control schemes, and optimizing controller parameters. In this contribution we will present results and gained experience from the commissioning phase and the first time period of real operation.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-MOPHA028  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPHA029 Operation Experiences with the MICROTCA.4-based LLRF Control System at FLASH 844
 
  • M. Omet, V. Ayvazyan, J. Branlard, Ł. Butkowski, M.K. Grecki, M. Hoffmann, F. Ludwig, U. Mavrič, S. Pfeiffer, K.P. Przygoda, H. Schlarb, Ch. Schmidt, H.C. Weddig, B.Y. Yang
    DESY, Hamburg, Germany
  • W. Cichalewski, D.R. Makowski
    TUL-DMCS, Łódź, Poland
  • K. Czuba, K. Oliwa, I. Rutkowski, R. Rybaniec, D. Sikora, W. Wierba, M. Żukociński
    Warsaw University of Technology, Institute of Electronic Systems, Warsaw, Poland
  • A. Piotrowski
    FastLogic Sp. z o.o., Łódź, Poland
 
  The Free-Electron Laser in Hamburg (FLASH) at Deutsches Elektronen-Synchrotron (DESY), Hamburg Germany is a user facility providing ultra-short, femtosecond laser pulses up to the soft X-ray wavelength range. For the precise regulation of the radio frequency (RF) fields within the 60 superconducting cavities, which are organized in 5 RF stations, digital low level RF (LLRF) control systems based on the MTCA.4 standard were implemented in 2013. Until now experiences with failures potentially due to radiation, overheating, and ageing as well as with the general operation of the control systems have been gained. These have a direct impact on the operation and on the performance of FLASH and will allow future improvements. The lessons learned are not only important for FLASH but also in the scope of European X-ray Free-Electron Laser (X-FEL), which will be operated with the same LLRF control system.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-MOPHA029  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPHA030 Commissioning of the Low-Noise MTCA.4-based Local Oscillator and Clock Generation Module 847
 
  • U. Mavrič, J. Branlard, M. Hoffmann, F. Ludwig, H. Schlarb
    DESY, Hamburg, Germany
  • D.R. Makowski, A. Mielczarek, P. Perek
    TUL-DMCS, Łódź, Poland
  • A. Rohlev
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
 
  Funding: Helmholtz Validation Fund Project "MicroTCA.4 for Industry"
Within the Helmholtz Validation Fund Project "MicroTCA.4 for Industry", DESY together with collaboration partners from industry and research developed a compact fully MicroTCA chassis-integrated local RF oscillator module. The local oscillator and clock generation module generates a low noise local oscillator out of the global reference that is distributed over the accelerator. The module includes a splitting section which provides 9 local oscillator signals which are distributed over the RF-Backplane to the rear-transition modules. Similarly, the clock signal is also generated out of a single reference input by means of low-noise dividers. The clock is then fan-out to 22 differential lines that are routed over the RF backplane to the rear-transition modules. The functional block is implemented such that it fits in the rear slots 15 and 14 of a standard MTCA.4 crate. In the paper the commissioning results measured on the L3 low-level RF stations of the European XFEL will be presented.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-MOPHA030  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPHA034 High Voltage RTM Piezo Driver for XFEL Special Diagnostics 860
 
  • K.P. Przygoda, M. Felber, C. Gerth, M. Heuer, E. Janas, U. Mavrič, P. Peier, H. Schlarb, B. Steffen, C. Sydlo
    DESY, Hamburg, Germany
  • T. Kozak, P. Prędki
    TUL-DMCS, Łódź, Poland
 
  High voltage RTM Piezo Driver has been developed to support special diagnostic applications foreseen for XFEL facility. The RTM is capable of driving 4 piezo actuators with voltages up to ±80 V. The solid-state power amplifiers are driven using 18-bit DACs and sampling rates of 1 MSPS. The bandwidth of the driver is remotely tunable using programmable low pass filters. The 4-channel Piezo Driver unit provides the information of piezo output voltage and current. Three independent test setups have been built to test 4-channel Piezo Driver performance. In the paper we are presenting EOD laser lock to 1.3 GHz FLASH master oscillator using bipolar piezo stretcher (fine tuning). The piezo motor based course tuning has been applied for the long term laser stability measurements. The unipolar piezo actuator operation has been demonstrated for the Origami Onefive laser locked to 1.3 GHz LAB MO. The preliminary results of active stabilization of 3 km fiber link laboratory setup are shown.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-MOPHA034  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUAD3 LLRF Commissioning of the European XFEL RF Gun and Its First Linac RF Station 1377
 
  • J. Branlard, G. Ayvazyan, V. Ayvazyan, Ł. Butkowski, M.K. Grecki, M. Hoffmann, F. Ludwig, U. Mavrič, M. Omet, S. Pfeiffer, K.P. Przygoda, H. Schlarb, Ch. Schmidt, H.C. Weddig, B.Y. Yang
    DESY, Hamburg, Germany
  • S. Bou Habib, K. Czuba, M. Grzegrzółka, E. Janas, K. Oliwa, J. Piekarski, K.T. Pozniak, I. Rutkowski, R. Rybaniec, D. Sikora, W. Wierba, L.Z. Zembala, M. Żukociński
    Warsaw University of Technology, Institute of Electronic Systems, Warsaw, Poland
  • W. Cichalewski, D.R. Makowski, A. Mielczarek, P. Perek
    TUL-DMCS, Łódź, Poland
  • A. Piotrowski
    FastLogic Sp. z o.o., Łódź, Poland
 
  The European X-ray free electron laser (XFEL) at the Deutsches Elektronen-Synchrotron (DESY), Hamburg Germany is in its construction phase. Approximately a third of the super-conductive cryomodules have been produced and tested. The RF gun is installed since 2013; periods of commissioning are regularly scheduled between installation phases of the rest of the injector. The first linac, L1, consisting of 4 cryomodules powered by one 10 MW klystron is installed and being commissioned. This contribution reports on the installation and preparation work of the low-level radio frequency system (LLRF) to perform the commissioning of the XFEL first components. The commissioning plans, schedule and first results are presented.  
slides icon Slides TUAD3 [14.016 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUAD3  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)