Author: Marti, F.
Paper Title Page
TUBB1 Charge Stripper Development for FRIB 1339
 
  • F. Marti, P. Guetschow, J.A. Nolen
    FRIB, East Lansing, Michigan, USA
  • A. Hershcovitch, P. Thieberger
    BNL, Upton, Long Island, New York, USA
  • Y. Momozaki, J.A. Nolen, C.B. Reed
    ANL, Argonne, Illinois, USA
 
  Funding: Work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661 and NSF grant PHY-1102511
The Facility for Rare Isotope Beams (FRIB) at Michigan State University is building a heavy ion linac to produce rare isotopes by the fragmentation method. The linac will accelerate ions up to U to energies above 200 MeV/u with beam powers up to 400 kW. At energies between 16 and 20 MeV/u the ions will be stripped to higher charge states to increase the energy gain downstream in the linac. The main challenges in the stripper design are due to the high power deposited by the ions in the stripping media (~ 30 MW/cm3) and radiation damage if solids are used. For that reason self-recovering stripper media must be used. The baseline stripper choice is a high-velocity, thin film of liquid lithium with an alternative option of a helium gas stripper. We present in this paper the status of the R&D and construction of the final stripper. Extensive experimental work has been performed on both options.
 
slides icon Slides TUBB1 [3.534 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUBB1  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPF136 Beam Dynamics Optimization of FRIB Folding Segment 1 with Single-type Re-buncher Cryomodule 4042
 
  • Z.Q. He, M. Ikegami, F. Marti, T. Xu, Y. Zhang, Q. Zhao
    FRIB, East Lansing, Michigan, USA
 
  Funding: The work is supported by the U.S. National Science Foundation under Grant No. PHY-11-02511, and the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661.
FRIB is using a charge stripper in folding segment 1 to increase the number of charge states of particles to enhance the acceleration efficiency. To control possible emittance growth after the charge stripper, the 3-dimensional on-stripper beam size should be as small as possible. The original 2-cavity-HWR (HWR stands for half wave resonator) rebuncher cryomodule is responsible for the longitudinal focusing before stripper. In order to accept and transport the beam downstream to linac segment 2, another kind of 3-cavity-QWR (QWR stands for quarter wave resonator) rebuncher cryomodule is baselined after the stripper. However, two kinds of cryomodules would increase the cost in design, therefore would be quite inefficient. In this paper, the FRIB lattice with only single-type 4-cavity-QWR rebuncher cryomodule in folding segment 1 is discussed. Positions of lattice elements are adjusted to accommodate the new type of cryomodule. Beam dynamics is optimized to meet the on-stripper beam requirement. The lattice is then adjusted and rematches.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-THPF136  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPF140 Unique Accelerator Integration Features of the Heavy Ion CW Driver Linac at FRIB 4051
 
  • Y. Yamazaki, N.K. Bultman, A. Facco, M. Ikegami, F. Marti, G. Pozdeyev, J. Wei, Y. Zhang, Q. Zhao
    FRIB, East Lansing, Michigan, USA
 
  Funding: Work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661
The FRIB driver linac is a front runner for the future high power hadron linacs, making a full use of CW, superconducting acceleration from very low β. Accelerator Driven Nuclear Waste Transmutation System (ADS), International Fusion Material Irradiation Facility (IFMIF), Project-X type proton accelerators for high energy physics and others may utilize the technologies developed for the design, construction, commissioning and power ramp up of the FRIB linac. Although each technology has been already well developed individually (except for charge stripper), their integration is another challenge. In addition, extremely high Bragg peak of uranium beams (several thousand times as high as that of proton beams) gives rise to one of the biggest challenges in many aspects. This report summarizes these challenges and their mitigations, emphasizing the commonly overlooked features.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-THPF140  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)