Author: Macha, K.
Paper Title Page
WEPWI011 Commissioning Results of Nb3Sn Cavity Vapor Diffusion Deposition System at JLab 3512
 
  • G.V. Eremeev, W.A. Clemens, K. Macha, H. Park, R.S. Williams
    JLab, Newport News, Virginia, USA
 
  Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177.
Nb3Sn as a BCS superconductors with a superconducting critical temperature higher than that of niobium offers potential benefit in lower surface resistance at the same temperature and frequency for SRF cavities. A Nb3Sn vapor diffusion deposition system was built and commissioned at Jefferson Lab. As the part of the commissioning a single cell 1.5 GHz CEBAF-shaped cavity was coated in the built system. The cavity exhibited the superconducting transition at about 17.9 K. The low field quality factor was about 5x109 at 4 K and 7x109 at 2 K dropping with field to about 109 at both temperatures at about 8 MV/m.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-WEPWI011  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPWI030 Injector Cavities Fabrication, Vertical Test Performance and Primary Cryomodule Design 3551
 
  • H. Wang, G. Cheng, W.A. Clemens, G.K. Davis, K. Macha, R.B. Overton, D. Spell
    JLab, Newport News, Virgina, USA
 
  Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177.
After the electromagnetic design * and the mechanical design ** of a β=0.6, 2-cell elliptical SRF cavity, the cavity has been fabricated. Then both 2-cell and 7-cell cavities have been bench tuned to the target values of frequency, coupling external Q and field flatness. After buffer chemistry polishing (BCP) and high pressure rinses (HPR), Vertical 2K cavity test results have been satisfied the specifications and ready for the string assembly. We will report the cavity performance including Lorenz Force Detuning (LFD) and Higher Order Modes (HOM) damping data. Its integration with cavity tuners to the cryomodule design will be reported.
* H. Wang, etc., Proceeding of IPAC2013, Shanghai, China, WEPWO073.
** G. Cheng, etc., Proceeding of PAC2013, Pasadena, CA, WEPAC47.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-WEPWI030  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)