Author: Lu, W.
Paper Title Page
MOPMA059 Lorentz boosted frame simulation of Laser wakefield acceleration using hybrid Yee-fft solver in quasi-3d geometry 691
 
  • P. Yu, A.W. Davidson, V.K. Decyk, W.B. Mori, A. Tableman, F.S. Tsung
    UCLA, Los Angeles, California, USA
  • F. Fiuza, L.O. Silva, J. Vieira
    IPFN, Lisbon, Portugal
  • R.A. Fonseca
    ISCTE - IUL, Lisboa, Portugal
  • W. Lu, X.L. Xu
    TUB, Beijing, People's Republic of China
 
  We present results from a preliminary study on modeling Laser wakefield acceleration (LWFA) with OSIRIS in a Lorentz boosted frame using a quasi-3D algorithm. In the quasi-3D algorithm, the fields and currents are expanded into azimuthal harmonics and only a limited number of harmonics are kept. Field equations in (r,z) space are solved for a desired number of harmonics in φ. To suppress the numerical Cerenkov instability (NCI) that inevitably arises due to the relativistic plasma drift in the simulation, we use a hybrid Yee-FFT solver in which the field equations are solved in (kz, r) space, where \hat{z} is the drifting direction. Preliminary results show that high fidelity LWFA boosted frame simulations can be carried out with no evidence of the NCI. Good agreement is found when comparing LWFA boosted frame simulations in the full 3D geometry against those in the quasi-3D geometry. In addition, we discuss how the moving window can be combined with the hybrid Yee-FFT solver to further speed up the simulation. The results indicate that unprecedented speed ups for LWFA simulations can be achieved when combining the Lorentz boosted frame technique, the quasi-3D algorithm, and a moving window.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-MOPMA059  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUYC1
Multi-GeV Electron and Positron Plasma Wakefield Acceleration Results at FACET  
 
  • S.J. Gessner, E. Adli, J.M. Allen, C.I. Clarke, J.-P. Delahaye, J.T. Frederico, S.Z. Green, M.J. Hogan, N. Lipkowitz, M.D. Litos, M.P. Schmeltz, D.R. Walz, V. Yakimenko, G. Yocky
    SLAC, Menlo Park, California, USA
  • E. Adli
    University of Oslo, Oslo, Norway
  • W. An, C.E. Clayton, C. Joshi, K.A. Marsh, W.B. Mori, N. Vafaei-Najafabadi
    UCLA, Los Angeles, California, USA
  • M. Downer, R. Zgadzaj
    The University of Texas at Austin, Austin, Texas, USA
  • W. Lu
    TUB, Beijing, People's Republic of China
  • P. Muggli
    MPI, Muenchen, Germany
 
  Funding: This work performed [in part] under DOE Contract DE-AC02-76SF00515.
The FACET accelerator test facility at SLAC hosts a new generation of Plasma Wakefield Acceleration (PWFA) experiments. "Two-bunch" experiments have demonstrated high-gradient, highly efficient energy transfer in a plasma wakefield. I will discuss results of follow-up experiments that use a 1.3 meter long plasma to accelerate witness bunch electrons to even higher energies. In a first, we observed multi-GeV acceleration of positrons in a plasma. This is a critical step in demonstrating the applicability of PWFA for High-Energy Physics applications.
 
slides icon Slides TUYC1 [8.619 MB]  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)