Author: Li, D.
Paper Title Page
WEPTY045 High-Intensity Proton RFQ Accelerator Fabrication Status for PXIE 3375
 
  • A.R. Lambert, A.J. DeMello, M.D. Hoff, D. Li, T.H. Luo, J.W. Staples, S.P. Virostek
    LBNL, Berkeley, California, USA
  • R. Andrews, C.M. Baffes, P. Berrutti, T.N. Khabiboulline, G.V. Romanov, D. Snee, J. Steimel
    Fermilab, Batavia, Illinois, USA
 
  Funding: Work supported by the Office of Science, U.S. Department of Energy under DOE contract number DE-AC02-05CH11231
PXIE is a prototype front end system for the proposed PIP-II accelerator upgrade at Fermilab. An integral component of the front end is a 162.5 MHz, normal conducting, CW (continuous wave), radio-frequency quadrupole (RFQ) cavity that was designed and is being fabricated by LBNL. This RFQ will accelerate a continuous stream of up to 10mA of H ions from 30 keV to 2.1 MeV. The four-vane, 4.45 meter long RFQ consists of four modules, each constructed from 2 pairs of identical modulated vanes. Vane modulations are machined using a custom carbide cutter designed at LBNL. Other machined features include ports for slug tuners, pi-mode rods, sensing loops, vacuum pumps and RF couplers. Vanes at the entrance and exit possess cutbacks for RF matching to the end plates. The vanes and pi-mode rods are bonded via hydrogen brazing with Cusil wire alloy. The brazing process mechanically bonds the RFQ vanes together and vacuum seals the module along its length. Vane fabrication is successfully completed, and the braze process has proved successful. Delivery of the full RFQ beam-line is expected in the middle of 2015.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-WEPTY045  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPTY046 Progress on the MICE 201 MHz Cavities at LBNL 3378
 
  • T.H. Luo, A.J. DeMello, A.R. Lambert, D. Li, S. Prestemon, S.P. Virostek
    LBNL, Berkeley, California, USA
 
  The international Muon Ionization Cooling Experiment aims to demonstrate the transverse cooling of amuon beam by ionization in energy absorbers. The final MICE cooling channel configuration has two RF modules, each housing a 201 MHz RF cavity used to compensate the longitudinal energy loss in the absorbers. The LBNL team has designed and fabricated all MICE RF cavities. The cavities will be post-processed and RF measured before being installed in the RF modules. We present the recent progress on this work, including the low level RF measurement on cavity body and Be windows, the electro-polishing (EP) on the cavity surface, the numerical simulation on cavity Be window detuning, and the ongoing mechanical designing work of cavity components.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-WEPTY046  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPTY047 Thermal and Lorentz Force Analysis of Beryllium Windows for the Rectilinear Muon Cooling Channel 3381
 
  • T.H. Luo, D. Li, S.P. Virostek
    LBNL, Berkeley, California, USA
  • D.L. Bowring
    Fermilab, Batavia, Illinois, USA
  • R.B. Palmer, D. Stratakis
    BNL, Upton, Long Island, New York, USA
 
  Reduction of the 6-dimensional phase-space of a muon beam by several orders of magnitude is a key requirement for a Muon Collider. Recently, a 12-stage rectilinear ionization cooling channel has been proposed to achieve that goal. The channel consists of a series of low frequency (325 MHz-650 MHz) normal conducting pillbox cavities, which are enclosed within thin beryllium windows (foils) to increase shunt impedance and give a higher field on-axis for a given amount of power. These windows are subject to ohmic heating from RF currents and Lorentz force from the EM field in the cavity, both of which will produce out of plane displacements that can detune the cavity frequency. In this study, using the TEM3P code, we report on a detailed thermal and mechanical analysis for the actual Be windows used on a 325 MHz cavity in a vacuum ionization cooling rectilinear channel for a Muon Collider.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-WEPTY047  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPTY055 Installation and Commissioning of the MICE RF Module Prototype 3395
 
  • Y. Torun, P.G. Lane
    Illinois Institute of Technology, Chicago, Illinois, USA
  • T.G. Anderson, D.L. Bowring, M. Chung, J.H. Gaynier, M.A. Leonova, A. Moretti, R.J. Pasquinelli, D.W. Peterson, R.P. Schultz
    Fermilab, Batavia, Illinois, USA
  • A.J. DeMello, D. Li, S.P. Virostek
    LBNL, Berkeley, California, USA
  • L. Somaschini
    INFN-Pisa, Pisa, Italy
 
  Funding: Supported by the US Department of Energy Office of Science through the Muon Accelerator Program.
A special vacuum vessel prototype was built to house the first production 201 MHz RF cavity for the International Muon Ionization Cooling Experiment (MICE). The resulting prototype RF module has been assembled, instrumented, installed and commissioned at Fermilab's MuCool Test Area and the effort has provided valuable experience for the design of modules that will be used in the cooling channel for the experiment.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-WEPTY055  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)