Author: Kuriki, M.
Paper Title Page
TUBC1 Recent Progress and Operational Status of the Compact ERL at KEK 1359
 
  • S. Sakanaka, M. Adachi, S. Adachi, T. Akagi, M. Akemoto, D.A. Arakawa, S. Araki, S. Asaoka, M. Egi, K. Enami, K. Endo, S. Fukuda, T. Furuya, K. Haga, K. Hara, K. Harada, T. Honda, Y. Honda, H. Honma, T. Honma, K. Hosoyama, K. Hozumi, A. Ishii, X.J. Jin, E. Kako, Y. Kamiya, H. Katagiri, H. Kawata, Y. Kobayashi, Y. Kojima, Y. Kondou, A. Kosuge, T. Kume, T. Matsumoto, H. Matsumura, H. Matsushita, S. Michizono, T. Miura, T. Miyajima, H. Miyauchi, S. Nagahashi, H. Nakai, H. Nakajima, N. Nakamura, K. Nakanishi, K. Nakao, K.N. Nigorikawa, T. Nogami, S. Noguchi, S. Nozawa, T. Obina, T. Ozaki, F. Qiu, H. Sagehashi, H. Sakai, S. Sasaki, K. Satoh, T. Shidara, M. Shimada, K. Shinoe, T. Shioya, T. Shishido, M. Tadano, T. Tahara, T. Takahashi, R. Takai, H. Takaki, T. Takenaka, O. Tanaka, Y. Tanimoto, N. Terunuma, M. Tobiyama, K. Tsuchiya, T. Uchiyama, A. Ueda, K. Umemori, J. Urakawa, K. Watanabe, M. Yamamoto, Y. Yamamoto, Y. Yano, M. Yoshida
    KEK, Ibaraki, Japan
  • E. Cenni
    Sokendai, Ibaraki, Japan
  • R. Hajima, S. Matsuba, M. Mori, R. Nagai, N. Nishimori, M. Sawamura, T. Shizuma
    JAEA, Ibaraki-ken, Japan
  • J.G. Hwang
    KNU, Deagu, Republic of Korea
  • M. Kuriki
    Hiroshima University, Graduate School of Science, Higashi-Hiroshima, Japan
  • Y. Seimiya
    HU/AdSM, Higashi-Hiroshima, Japan
 
  Funding: Work supported by the Photon and Quantum Basic Research Coordinated Development Program from the MEXT, and by the MEXT grant for promoting technology for nuclear security.
The Compact Energy Recovery Linac (cERL) is a superconducting test accelerator aimed at establishing technologies for the ERL-based future light source. After its construction during 2009 to 2013, the first CW beams of 20 MeV were successfully transported through the recirculation loop in February 2014*. Then, initial tuning of beams and evaluations of beam properties were carried out. From September to December in 2014, we are constructing a Laser Compton Scattering (LCS) source** which aims at demonstrating technology for the future high-flux quasi-monochromatic gamma-ray source. In the next run of the cERL, which begins at the end of January 2015, we plan such works as an increase in the beam current (from 10 uA to 100 uA), commissioning of the LCS source, and sustained tuning of beams for lower emittance. We will report up-to-date results of these developments.
* N. Nakamura et al., IPAC2014, MOPRO110; S. Sakanaka et al., LINAC14, TUPOL01.
** R. Nagai et al., IPAC2014, WEPRO003.
 
slides icon Slides TUBC1 [2.679 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUBC1  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPWA062 GaAs Photocathode Activation with CsTe Thin Film 1567
 
  • M. Kuriki, Y. Seimiya, K. Uchida
    HU/AdSM, Higashi-Hiroshima, Japan
  • S. Kashiwagi
    Tohoku University, Research Center for Electron Photon Science, Sendai, Japan
 
  Funding: This work is partly supported by MEXT/JSPS KAKENHI (Grant-in-Aid for scientific research) 24654054.
GaAs is an unique and advanced photocathode which can generate highly polarized and extremely low emittance electron beam. The photo-emission is possible up to 900nm wavelength. These advantages are due to NEA (Negative Electron Affinity) surface where the conduction band minimum is higher than the vacuum energy state. The NEA surface is artificially made with Cs-O/F evaporation on the cleaned GaAs surface, but the NEA surface is fragile, so that the emission is easily lost by poor vacuum environment and high emission density. NEA activation with any vital material is desirable. We found that the GaAs can be activated by CsTe thin film which is known as a vital photo-cathode material. The photo-electron emission spectrum extends up to 900 nm wavelength which corresponds to the band-gap energy of GaAs. The result strongly suggests that the surface becomes effectively NEA state by the CsTe thin film.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPWA062  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPWA063 FEL Enhancement by Microbuch Structure Made with Phase-Space Rotation 1570
 
  • M. Kuriki, Y. Seimiya
    HU/AdSM, Higashi-Hiroshima, Japan
  • S. Chen, K. Ohmi, J. Urakawa
    KEK, Ibaraki, Japan
  • S. Kashiwagi
    Tohoku University, Research Center for Electron Photon Science, Sendai, Japan
  • R. Kato
    ISIR, Osaka, Japan
 
  Funding: This work is partly supported by MEXT/JSPS KAKENHI (Grant-in-Aid for scientic research) 25390126, Japan.
FEL is one of the ideal radiation source over the wide range of wavelength region with a high brightness and a high coherence. Many methods to improve FEL gain has been proposed by introducing an active modulation on the bunch charge distribution. The transverse-longitudinal phase-space rotation is one of the promising method to realize the density modulation as the micro-bunch structure. Initially, a beam density modulation in the transverse direction made by a mechanical slit, is properly transformed into the density modulation in the longitudinal direction by the phase-space rotation. The micro-bunch structure made with this method has a large tunability by changing the slit geometry, the beam line design, and the beam dynamics tuning. For FEL, enegy chirp made by the emittance exchange and chromaticity made by this chirp should be properly corrected. Simulation results and possible applications are discussed.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPWA063  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPWA016 CsKSb Photocathode R&D with High Quantum Efficiency and Long Lifetime 2526
 
  • Y. Seimiya, R. Kaku, M. Kuriki, A. Yokota
    HU/AdSM, Higashi-Hiroshima, Japan
  • T. Konomi
    UVSOR, Okazaki, Japan
  • T. Miyajima, M. Yamamoto
    KEK, Ibaraki, Japan
 
  Advanced electron linear accelerator such as Energy Recovery Linac and Free Electron Laser needs high brightness electron source. Photocathode is suitable for the high brightness requirement because some of them has low emittance and high quantum efficiency. In the photocathode, CsKSb multi-alkali photocathode has excellent features: high quantum efficiency, long lifetime, and driven by visible light, for example green laser. Therefore, the multi-alkali photocathode is considered to be one of the best candidates for the high brightness electron source of the advanced electron accelerator. We report developments of our evaporation system and results of quantum efficiency and lifetime measurement in Hiroshima University. Multi-alkali surface analyzation has being measured by ultra-violet photoemission spectroscopy to study conditions between the multi-alkali performances and the surface condition in Institute Molecular Science. We also report the status of the progress abort the study.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-WEPWA016  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPWA017 An Optimization of ILC Positron Source for Electron-Driven Scheme 2529
 
  • Y. Seimiya, M. Kuriki, M. Urano
    HU/AdSM, Higashi-Hiroshima, Japan
  • S. Kashiwagi
    Tohoku University, School of Science, Sendai, Japan
  • T. Okugi, T. Omori, M. Satoh, J. Urakawa
    KEK, Ibaraki, Japan
  • T. Takahashi
    Hiroshima University, Graduate School of Science, Higashi-Hiroshima, Japan
 
  International Linear Collider is a future accelerator to find new physics behind the electroweak symmetry breaking by precise measurements of Higgs sector, Top quark, and so on. ILC has capacities to reveal new phenomena beyond Standard model, such as Supersymmetry particles and dark matters. In current design of positron source, undulator scheme is adapted as a baseline. In the scheme, positrons are generated from gamma rays through pair-creation process in Ti-alloy target. Generations of the gamma rays by the undulator radiation requires more than 130 GeV electrons. Therefore, a system demonstration of the scheme is practically difficult prior to the real construction. Consequently, it is desirable to prepare a technical backup of this undulator scheme. We study an optimization of positron source based on the conventional electron-driven scheme for ILC. In this scheme, positron beam is generated by several GeV electron beam impinging on W-Re target. Although heavy heat load and destruction of the target is a potential problem, it can be relaxed by stretching the effective pulse length to 60 ms instead of 1 ms, by a dedicated electron linac for the positron production. In this report, a start-to-end simulation of the electron-driven ILC positron source is performed. Beam-loading effect caused by multi-bunch acceleration in the standing wave RF cavity is also considered.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-WEPWA017  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMA060 The Development of Cavity Frequency Tracking Type RF Control System for SRF-TEM 2914
 
  • N. Higashi
    The University of Tokyo, Graduate School of Science, Tokyo, Japan
  • A. Enomoto, Y. Funahashi, T. Furuya, X.J. Jin, Y. Kamiya, S. Michizono, M. Nishiwaki, H. Sakai, M. Sawabe, K. Ueno, M. Yamamoto
    KEK, Ibaraki, Japan
  • M. Kuriki
    HU/AdSM, Higashi-Hiroshima, Japan
  • S. Yamashita
    ICEPP, Tokyo, Japan
 
  Superconducting accelerating cavities used in high-energy accelerators can generate high electric fields of several 10 MV/m by supplying radio frequency waves (RF) with frequencies matched with resonant frequencies of the cavities. Generally, frequencies of input RFs are fixed, and resonant frequencies of cavities that are fluctuated by Lorentz force detuning and Microphonics are corrected by feedbacks of cavity frequency tuners and input RF power. Now, we aim to develop the cavity frequency tracking type RF control system where the frequency of input RF is not fixed and consistently modulated to match the varying resonant frequency of the cavity. In KEK (Tsukuba, Japan), we are developing SRF-TEM that is a new type of transmission electron microscope using special-shaped superconducting cavity. By applying our new RF control system to the SRF-TEM, it is expected to obtain stable accelerating fields so that we can acquire good spatial resolution. In this presentation, we will explain the required stabilities of accelerating fields for SRF-TEM and the feasibility of SRF-TEM in the case of applying the cavity frequency tracking type RF control system.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-WEPMA060  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)