Author: Koratzinos, M.
Paper Title Page
TUPTY058 Mitigating Performance Limitations of Single Beam-pipe Circular e+e Colliders 2160
 
  • M. Koratzinos
    DPNC, Genève, Switzerland
  • F. Zimmermann
    CERN, Geneva, Switzerland
 
  Renewed interest in circular e+e colliders has spurred designs of single beam-pipe machines, like the CEPC in China, and double beam pipe ones, such as the FCC-ee effort at CERN. Single beam-pipe designs profit from lower costs but are limited by the number of bunches that can be accommodated in the machine. We analyse these performance limitations and propose a solution that can accommodate O(1000) bunches while keeping more than 90% of the ring with a single beam pipe.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPTY058  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPTY060 The FCC-ee Study: Progress and Challenges 2165
 
  • M. Koratzinos
    DPNC, Genève, Switzerland
  • S. Aumon, C. Cook, A. Doblhammer, B. Härer, B.J. Holzer, R. Tomás, F. Zimmermann
    CERN, Geneva, Switzerland
  • A.V. Bogomyagkov, E.B. Levichev, D.N. Shatilov
    BINP SB RAS, Novosibirsk, Russia
  • M. Boscolo
    INFN/LNF, Frascati (Roma), Italy
  • L.E. Medina Medrano
    UGTO, Leon, Mexico
  • U. Wienands
    SLAC, Menlo Park, California, USA
 
  The FCC (future circular collider) study represents a vision for the next large project in high energy physics, comprising a 80-100 km tunnel that can house a future 100TeV hadron collider. The study also includes a high luminosity e+e collider operating in the centre-of-mass energy range of 90-350 GeV as a possible intermediate step, the FCC-ee. The FCC-ee aims at definitive electro-weak precision measurements of the Z, W, H and top particles, and search for rare phenomena. Although FCC-ee is based on known technology, the goal performance in luminosity and energy calibration make it quite challenging. During 2014 the study went through an exploration phase and during the next three years a conceptual design report will be prepared.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPTY060  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPTY063 FCC-ee: Energy Calibration 2177
 
  • M. Koratzinos, A.P. Blondel
    DPNC, Genève, Switzerland
  • E. Gianfelice-Wendt
    Fermilab, Batavia, Illinois, USA
  • F. Zimmermann
    CERN, Geneva, Switzerland
 
  FCC-ee aims to improve on electroweak precision measurements, with goals of 100 keV on the Z mass and width, and a fraction of an MeV on the W mass. Compared to LEP, this implies a much improved knowledge of the centre-of-mass energy when operating at the Z peak and WW threshold. This contribution will describe how it is planned to achieve this, by making systematic use of resonant depolarization. A number of difficulties have been identified, due in particular to the long polarization time and amplified ground motion. However the smaller emittance and energy spread of FCC-ee with respect to LEP should help achieve a much improved performance.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPTY063  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)