Author: Kondo, Y.
Paper Title Page
MOPWA057 Space Charge Simulation and Matching at Low Energy Section of J-PARC Linac 251
 
  • S. Artikova, T. Morishita
    JAEA/J-PARC, Tokai-mura, Japan
  • Y. Kondo
    JAEA, Ibaraki-ken, Japan
 
  An intensity upgrade of Japan Proton Accelerator Research Complex (J-PARC) included the installation of a new ion source (IS) and a radio-frequency quadrupole (RFQ) which to be used at first stage of acceleration. The linac is divided into two sections on the basis of operating frequencies and three sections on the basis of family of RF cavities to be used for the acceleration of 50 mA beam of H ions from 50 keV to 400 MeV. Low energy part of linac consists of an IS, a two-solenoid low energy beam transport (LEBT) and the RFQ. The transition from one section to another can limit the acceptance of the linac if these are not matched properly in both longitudinal and transverse plane. We performed a study to calculate the acceptance of the RFQ at zero current in which space charge effects are not considered. In addition, a particle tracking technique is employed to study the space charge effects in LEBT of the J-PARC linac after the intensity upgrade in order to match the beam to the RFQ. Also, RFQ tank level and intervene voltage calibration factor is determined by comparing the simulation results of the beam transmission with the test measurement of tank level vs. transmission.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-MOPWA057  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPWA023 Development of Muon LINAC for the Muon g-2/EDM Experiment at J-PARC 2541
 
  • M. Otani, Y. Fukao, T. Mibe, N. Saito, M. Yoshida
    KEK, Ibaraki, Japan
  • Y. Iwashita
    Kyoto ICR, Uji, Kyoto, Japan
  • R. Kitamura
    University of Tokyo, Tokyo, Japan
  • Y. Kondo
    JAEA, Ibaraki-ken, Japan
 
  The muon anomalous magnetic moment (g-2) and electric dipole moment (EDM) are one of the effective paths to beyond Standard Model of elementary particle physics. The E34 experiment aims to measure g-2 with a precision of 0.1 ppm and search EDM with a sensitivity to 10-21 e*cm with high intensity proton driver at J-PARC and a newly developed novel technique of the ultra-cold muon beam. The ultra-cold muons, which are generated from surface muons by the thermal muonium production and laser ionization, are accelerated to 300 MeV/c by muon linear accelerator. The muon LINAC consists of RFQ and following three types of the RF cavities. The muon acceleration to this energy will be the first case in the world. This poster reports about status of the initial acceleration test with RFQ and the development of the RF cavities, especially for the middle beta section.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-WEPWA023  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPWA018 Re-acceleration of Ultra Cold Muon in J-PARC MLF 2532
 
  • M. Yoshida, F. Naito
    KEK, Ibaraki, Japan
  • S. Artikova, Y. Kondo
    JAEA/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken, Japan
  • N. Hayashizaki
    RLNR, Tokyo, Japan
  • Y. Iwashita
    Kyoto ICR, Uji, Kyoto, Japan
  • K. Torikai
    Gunma University, Heavy-Ion Medical Research Center, Maebashi-Gunma, Japan
 
  Funding: MEXT KAKENHI Grant Number 6108718
The ultra cold muon beam by two-photon laser resonant ionization of muonium atoms is unique way to obtain very low emittance muon beam. Its muon source is a surface muon from the muon target in MLF where one percent proton beam from J-PARC RCS is reacted. In close collaboration with the Muon Science Es- tablishment (MUSE) at Material and Life science experi- mental Facility (MLF) of the Japan Proton Accelerator Re- search Complex (J-PARC), we are developing the reacceleration system of the ultra cold muon beam. Its optimum accelerating structure is similar to a proton accelerator in low beta part and an electron accelerator in high beta part. Further the muon bunch is only two bunch corresponding to the bunch structure of the J-PARC RCS. Thus we are testing the dielectric transmission line accelerator based on the photoconductive switch as the altenative acceleration method.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-WEPWA018  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPF045 Simulation Study of Muon Acceleration using RFQ for a New Muon g-2 Experiment at J-PARC 3801
 
  • Y. Kondo, K. Hasegawa
    JAEA/J-PARC, Tokai-mura, Japan
  • R. Kitamura
    University of Tokyo, Tokyo, Japan
  • T. Mibe, M. Otani, N. Saito
    KEK, Tsukuba, Japan
 
  A new muon g-2 experiment is planning at J-PARC. In this experiment, ultra cold muons will be generated and accelerated using a linear accelerator. As the first accelerating structure, an RFQ will be used. We are planning to use a spare RFQ of the J-PARC linac for the first acceleration test. We present simulation studies of this acceleration test. A design study of a muon dedicated RFQ is also shown.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-THPF045  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)