Paper |
Title |
Page |
WEPMA018 |
Status of the Ring RF Systems for FAIR |
2789 |
|
- M. Frey, R. Balß, C. Christoph, O. Disser, G. Fleischmann, U. Hartel, P. Hülsmann, S. Jatta, A. Klaus, H. Klingbeil, H.G. König, U. Laier, D.E.M. Lens, D. Mondry, K.-P. Ningel, H. Richter, S. Schäfer, C. Thielmann, T. Winnefeld, B. Zipfel
GSI, Darmstadt, Germany
- K. Groß, H. Klingbeil
TEMF, TU Darmstadt, Darmstadt, Germany
|
|
|
For the FAIR (Facility for Antiproton and Ion Research) synchrotron SIS100 and the storage ring CR (Collector Ring), different RF cavity systems are currently being realized. In addition to the standard RF bucket generation and acceleration, these ring RF systems also allow more complex beam manipulations such as barrier bucket operation or bunch rotation in phase space. Depending on their purpose, the cavities are either loaded with ferrite material or with MA (Magnetic Alloy) ring cores. Independent of the type of cavity, a complete cavity system consists of the cavity itself, a tetrode-based power amplifier, a solid-state pre-amplifier, a supply unit including PLC (Programmable Logic Control), and an RF control system (so-called LLRF, low level RF system). In this contribution, the different systems are described, and their current status is presented.
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-IPAC2015-WEPMA018
|
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|
THPF015 |
Status of the FAIR Heavy Ion Synchrotron Project SIS100 |
3715 |
|
- P.J. Spiller, U. Blell, L.H.J. Bozyk, J. Ceballos Velasco, T. Eisel, E.S. Fischer, O.K. Kester, H.G. König, H. Kollmus, V. Kornilov, P. Kowina, J.P. Meier, A. Mierau, C. Mühle, C. Omet, D. Ondreka, N. Pyka, H.R. Ramakers, P. Rottländer, C. Roux, P. Schnizer, St. Wilfert
GSI, Darmstadt, Germany
|
|
|
The procurements of major technical components for the heavy ion synchrotron SIS100 are progressing. Especially the production of the long lead items, the main superconducting dipole and quadrupole magnets and the main Rf systems could be started. The system layout for the injection system and the specifications for all injection devices has been completed. In parallel, the Digital Mock-Up (DMU) and design for major extraction components has been developed. Certain technical challenges observed during the acceptance tests of First of Series (FOS) components and risks and their mitigation will be presented.
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-IPAC2015-THPF015
|
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|