Author: Kneisel, P.
Paper Title Page
WEPMA010 First Test Results of the BERLinPro 2-cell Booster Cavities 2765
 
  • A. Burrill, W. Anders, A. Frahm, J. Knobloch, A. Neumann
    HZB, Berlin, Germany
  • G. Ciovati, W.A. Clemens, P. Kneisel, L. Turlington
    JLab, Newport News, Virginia, USA
 
  The BERLinPro Energy Recovery Linac (ERL) is currently being built at Helmholtz-Zentrum Berlin in order to study the physics of operating a high current, a 100 mA, 50 MeV ERL utilizing all SRF cavity technology. This machine will utilize three unique SRF cryomodules for the photoinjector, booster and linac cryomodules respectively. The focus of this paper will be on the cavities contained within the booster cryomodule. Here there will be three 2-cell SRF cavities, based on the original design by Cornell University, but optimized to meet the needs of the project. All of the cavity fabrication, processing and testing was carried out at Jefferson Laboratory where 4 cavities were produced and the 3 cavities with the best RF performance were fitted with helium vessels for installation in the cryomodule. This paper will report on the test results of the cavities as measured in the vertical testing dewar at JLab after fabrication and again after outfitting with the helium vessels.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-WEPMA010  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMA011 First Horizontal Test Results of the HZB SRF Photoinjector for BERLinPro 2768
 
  • A. Burrill, W. Anders, A. Frahm, J. Knobloch, A. Neumann
    HZB, Berlin, Germany
  • G. Ciovati, W.A. Clemens, P. Kneisel, L. Turlington
    JLab, Newport News, Virginia, USA
 
  The BERLinPro project, a small superconducting RF (SRF) c.w. energy recovery linac (ERL) is being built at Helmholtz-Zentrum Berlin in order to develop the technology required for operation of a high current, 100 mA, 50 MeV ERL. The electron source for the accelerator is a 1.4 cell SRF photoinjector fitted with a multi-alkali photocathode. As part of the HZB photoinjector development program three different SRF photoinjectors will be fabricated and tested. The photoinjector described herein is the second cavity that has been fabricated, and the first photoinjector designed for use with a multi-alkali photocathode. The photoinjector has been built and tested at JLab and subsequently shipped to HZB for testing in the horizontal test cryostat HoBiCaT prior to installation in the photoinjector cryomodule. This cryomodule will be used to measure the photocathode operation in a dedicated experiment called GunLab, the precursor to installation in the BERLinPro hall. This paper will report on the final results of the cavity installed in the helium vessel in the vertical testing dewar at Jefferson Lab as well as the first horizontal test in HoBiCaT  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-WEPMA011  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPWI009 Nitrogen Doping Study in Ingot Niobium Cavities 3506
 
  • P. Dhakal, G. Ciovati, P. Kneisel, G.R. Myneni
    JLab, Newport News, Virginia, USA
  • J. Makita
    ODU, Norfolk, Virginia, USA
 
  Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177
Thermal diffusion of nitrogen in superconducting radio frequency cavities at temperatures around 800C has resulted in the increase in quality factor with a low-field Q-rise. However, the maximum accelerating gradients of these doped cavities often reduces below the values achieved by standard treatments. In this contribution, we present the results of the nitrogen diffusion into ingot niobium cavities subjected to successive material removal from the inner cavity surface by electropolishing in an effort to explore the underlying cause for the gradient degradation.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-WEPWI009  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)