Paper | Title | Page |
---|---|---|
MOPWI011 | Beam Stability R&D for the APS MBA Upgrade | 1167 |
|
||
Funding: Results shown in this report result from work performed at Argonne National Laboratory operated by UChicago Argonne, LLC, for the U.S. Department of Energy under contract DE-AC02-06CH11357. Beam diagnostics required for the APS MBA are driven by ambitious beam stability requirements. The major AC stability challenge is to correct rms beam motion to 10% the rms beam size at the insertion device source points from 0.01 to 1000 Hz. The vertical plane represents the biggest challenge for AC stability which is required to be 400 nm rms for a 4 micron vertical beam size. Long term drift over a period of 7 days is required to be 1 micron or less. Major diagnostics R&D components are improved rf beam position processing using commercially available fpga based bpm processors, new XRay beam position monitors sensitive only to hard X-rays, mechanical motion sensing and remediation to detect and correct long term drift and a new feedback system featuring a tenfold increase in sampling rate and a several-fold increase in the number of fast correctors and bpms. Feedback system development represents a major effort and we are pursuing development of a novel algorithm that integrates orbit correction for both slow and fast correctors down to DC simultaneously. Finally a new data acquisition system (DAQ) is being developed to acquire streaming data from all diagnostics. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-MOPWI011 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPTY011 | Power Supply Conceptual Design and R&D for the APS Upgrade | 3276 |
|
||
Funding: Work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. The MBA upgrade for the APS requires a large number of power supplies with either unipolar or bipolar DC output currents. The unipolar power supplies will be used to power the main coils in the dipole, quadrupole, and sextupole magnets and the bipolar power supplies will be used for the trim or correction coils. There are several demanding requirements of the power supplies. The unipolar power supplies are expected to have a current stability within 10 parts per million (ppm) of the full scale. The currents must be calibrated to the specification and confirmed with independent and accurate measurement. The bipolar power supplies for the fast correction magnets are required to have a wide output current bandwidth in order to minimize the impact on the real-time feedback system for the beam position correction. There are also new requirements for the power supply controls and communications that are much more demanding than that in the existing APS accelerators. This paper will report the conceptual designs of the power supply systems and the R&D program that is developed to find solutions to the technical challenges. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-WEPTY011 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |