Author: Kanareykin, A.
Paper Title Page
TUPMA042 THz Radiation Generation in a Multimode Wakefield Structure 1929
 
  • S.P. Antipov, S.V. Baryshev, C.-J. Jing, A. Kanareykin
    Euclid TechLabs, LLC, Solon, Ohio, USA
  • M.G. Fedurin
    BNL, Upton, Long Island, New York, USA
  • W. Gai, D. Wang, A. Zholents
    ANL, Argonne, Ilinois, USA
 
  Funding: Work supported by the Department of Energy SBIR program under Contract #DE-SC0009571
A number of methods for producing sub-picosecond beam microbunching have been developed in recent years. A train of these bunches is capable of generating THz radiation via multiple mechanisms like transition, Cherenkov and undulator radiation. We utilize a bunch train with tunable spacing to selectively excite high order TM0n - like modes in a multimode structure. In this paper we present experimental results obtained at the Accelerator Test Facility of Brookhaven National Laboratory.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPMA042  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMA043 Experimental Test of Semiconductor Dechirper 1932
 
  • S.P. Antipov, S.V. Baryshev, C.-J. Jing, A. Kanareykin
    Euclid TechLabs, LLC, Solon, Ohio, USA
  • S. Baturin
    LETI, Saint-Petersburg, Russia
  • M.G. Fedurin, K. Kusche, C. Swinson
    BNL, Upton, Long Island, New York, USA
  • W. Gai, S. Stoupin, A. Zholents
    ANL, Argonne, Illinois, USA
 
  Funding: Work supported by the Department of Energy SBIR program under Contract #DE-SC0006299
We report the observation of de-chirping of a linearly chirped (in energy) electron bunch by its passage through a 4 inch long rectangular waveguide loaded with two silicon bars 0.25 inch thick and 0.5 inch wide. Silicon being a semiconductor has a conductivity that allows it to drain the charge fast in case if some electrons get intercepted by the dechirper. At the same time the conductivity is low enough for the skin depth to be large (on the order of 1 cm) making the silicon loaded waveguide a slow wave structure supporting wakefields that dechirp the beam.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPMA043  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPJE020 The Two Beam Acceleration Staging Experiment at Argonne Wakefield Accelerator Facility 2714
 
  • C.-J. Jing, S.P. Antipov, A. Kanareykin, J.Q. Qiu
    Euclid TechLabs, LLC, Solon, Ohio, USA
  • M.E. Conde, D.S. Doran, W. Gai, G. Ha, W. Liu, J.G. Power, J.H. Shao, D. Wang, E.E. Wisniewski
    ANL, Argonne, Illinois, USA
  • J. Shi
    TUB, Beijing, People's Republic of China
 
  Funding: DoE SBIR Program
Staging, defined as the accelerated bunch in a wakefield accelerator continues to gain energy from sequential drive bunches, is one of the most critical technologies, yet be demonstrated, required to achieve high energy. Using the Two Beam Acceleration (TBA) beamline at Argonne Wakefield Accelerator facility, we will perform a staging experiment using two X-band TBA units. The experiment is planned to conduct in steps. We report on the most recent progress.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-WEPJE020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMA035 Low- and High-Beta SRF Elliptical Cavity Stiffening 2835
 
  • E.N. Zaplatin
    FZJ, Jülich, Germany
  • A. Kanareykin
    Euclid TechLabs, LLC, Solon, Ohio, USA
  • V.P. Yakovlev
    Fermilab, Batavia, Illinois, USA
 
  Elliptical SRF cavities are the main accelerating structures in many accelerators worldwide. Different types of external loads on the resonator walls predetermine the main working conditions of the SC cavities. The most important of them are very high electromagnetic fields that result in strong Lorentz forces and the pressure on cavity walls from the helium tank that also deforms the cavity shape. Also mechanical eigen resonances of cavities are the main source of the microphonics. To withstand any kind of external loads on the resonator walls different schemes of the cavity stiffening were applied. In the paper we report the basic investigations of the cavity stiffening using FNAL 650 MHz β=0.92 and 0.61 as an example. The single-cell investigation results were used as the reference to develop the ultimate scheme of the helium vessel structure to ensure the best resonator stability.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-WEPMA035  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMA036 Double-Cell Notch Filter for SRF Gun Investigations 2838
 
  • E.N. Zaplatin
    FZJ, Jülich, Germany
  • A. Kanareykin
    Euclid TechLabs, LLC, Solon, Ohio, USA
  • J. Knobloch, A. Neumann
    HZB, Berlin, Germany
  • V.P. Yakovlev
    Fermilab, Batavia, Illinois, USA
 
  Some projects of SRF guns apply the design where the cathode can be easily and quickly removed. One of the disadvantages of this design is the RF power leakage from the accelerating gun cavity cells to the cathode housing that results in the excessive cathode heating. To minimize the RF power leak different kinds of choke filters are used to protect the cathode structure. These choke filters represent resonant circuits with a zero input impedance and installed at the entrance of the cathode structure that shunt the cathode housing. Still, since the choke filter frequency shift under working conditions is bigger than its bandwidth a filter tuning during assembly only in the warm stage seems insufficient and requires also fine-tuning during operation. To eliminate the problems of the choke filter fine-tuning and hence ensure its stability during operation, a combination of the resonance choke elements can be implemented. In the paper we demonstrate advantages of the double-cell notch filter using BERLinPro SRF gun cavity as an example with its simple design modifications.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-WEPMA036  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMA037 Manufacturing and First Test Results of Euclid SRF Conical Half-wave Resonator 2841
 
  • E.N. Zaplatin
    FZJ, Jülich, Germany
  • C.H. Boulware, T.L. Grimm, A. Rogacki
    Niowave, Inc., Lansing, Michigan, USA
  • A. Kanareykin
    Euclid TechLabs, LLC, Solon, Ohio, USA
  • V.P. Yakovlev
    Fermilab, Batavia, Illinois, USA
 
  Funding: This Work is supported by the DOE SBIR Program, contract # DE-SC0006302.
Euclid TechLabs has developed a superconducting conical half-wave resonator (162.5 MHz β=v/c=0.11) for the high-intensity proton accelerator complex proposed at Fermi National Accelerator Laboratory. The main objective of this project is to provide a resonator design with high mechanical stability based on an idea of the balancing cavity frequency shifts caused by external loads. A unique cavity side-tuning option has been successfully implemented. Niowave, Inc. proposed a complete cavity production procedure including preparation of technical drawings, processing steps and resonator high-gradient tests. During manufacturing a series of cavity and helium vessel modifications to simplify their manufacturing were proposed. Following standard buffered chemical polish surface treatment and high-pressure rinse, a vertical test was carried out at Niowave’s facilities. Here we present the status of the project and the first high-gradient results.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-WEPMA037  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPWI045 Status of Superconducting Traveling Wave Cavity for High Gradient Linac 3591
 
  • R.A. Kostin, P.V. Avrakhov, A. Kanareykin
    Euclid TechLabs, LLC, Solon, Ohio, USA
  • T.N. Khabiboulline, Y.M. Pischalnikov, N. Solyak, V.P. Yakovlev
    Fermilab, Batavia, Illinois, USA
 
  The use of a travelling wave (TW) accelerating structure with a small phase advance per cell instead of standing wave may provide a significant increase of accelerating gradient in a superconducting linear accelerator. The TW section achieves an accelerating gradient 1.2-1.4 times larger than TESLA-shaped standing wave cavities for the same surface electric and magnetic fields. The final stage of a 3-cell superconducting travelling wave cavity development is presented. This cavity will be tested in travelling wave regime at cryogenic temperature.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-WEPWI045  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPWI046 Demonstration of Coaxial Coupling Scheme at 26 MV/m for 1.3 GHz TESLA-type SRF Cavities 3594
 
  • Y. Xie, A. Kanareykin
    Euclid TechLabs, LLC, Solon, Ohio, USA
  • T.N. Khabiboulline, A. Lunin, V. Poloubotko, A.M. Rowe, N. Solyak, V.P. Yakovlev
    Fermilab, Batavia, Illinois, USA
  • J. Rathke
    AES, Medford, New York, USA
 
  Funding: Work sponsored by DOE SBIR Grant DE-SC0002479.
We will report the first successful rf test of a detachable coaxial coupler by Euclid Techlabs and Fermilab SRF development department. The coaxial coupling method has vast advantages compared with ordinary welded-on couplers. It totally eliminates coupler kicks and it is detachable and easy to clean. We reached 26 MV/m (no hard quench limit) with a quarter-wave detachable coaxial coupler. This is also a demonstration of the highest field gradient ever reached with a superconducting joint.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-WEPWI046  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)