Author: Jones, O.R.
Paper Title Page
MOPTY053 Electromagnetic Design and Optimization of Directivity of Stripline Beam Position Monitors for the High Luminosity Large Hadron Collider 1051
 
  • D. Draskovic, C.B. Boccard, O.R. Jones, T. Lefèvre, M. Wendt
    CERN, Geneva, Switzerland
 
  This paper presents the preliminary electromagnetic design of a stripline Beam Position Monitor (BPM) for the High Luminosity program of the Large Hadron Collider (HL-LHC) at CERN. The design is fitted into a new octagonal shielded Beam Screen for the low-beta triplets and is optimized for high directivity. It also includes internal Tungsten absorbers, required to reduce the energy deposition in the superconducting magnets. The achieved broadband directivity in wakefield solver simulations presents significant improvement over the directivity of the current stripline BPMs installed in the LHC.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-MOPTY053  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUAC1 Beam Instrumentation and Diagnostics for High Luminosity LHC 1349
 
  • O.R. Jones, E. Bravin, B. Dehning, T. Lefèvre, H. Schmickler
    CERN, Geneva, Switzerland
 
  The extensive array of beam instrumentation with which the LHC is equipped, has played a major role in its commissioning, rapid intensity ramp-up and safe and reliable operation. High Luminosity LHC (HL-LHC) brings with it a number of new challenges in terms of instrumentation that will be discussed in this contribution. The beam loss system will need significant upgrades in order to be able to cope with the demands of HL-LHC, with cryogenic beam loss monitors under investigation for deployment in the new inner triplet magnets to distinguish between primary beam losses and collision debris. Radiation tolerant integrated circuits are also being developed to allow the front-end electronics to sit much closer to the detector. Upgrades to other existing systems are also envisaged; including the beam position measurement system in the interaction regions and the addition of a halo measurement capability to synchrotron light diagnostics. Additionally, several new diagnostic systems are under investigation, such as very high bandwidth pick-ups and a streak camera installation, both able to perform intra-bunch measurements of transverse position on a turn by turn basis.  
slides icon Slides TUAC1 [4.490 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUAC1  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPWA039 The AWAKE Electron Primary Beam Line 2584
 
  • J.S. Schmidt, J. Bauche, B. Biskup, C. Bracco, E. Bravin, S. Döbert, M.A. Fraser, B. Goddard, E. Gschwendtner, L.K. Jensen, O.R. Jones, S. Mazzoni, M. Meddahi, A.V. Petrenko, F.M. Velotti, A.S. Vorozhtsov
    CERN, Geneva, Switzerland
  • U. Dorda
    DESY, Hamburg, Germany
  • L. Merminga, V.A. Verzilov
    TRIUMF, Vancouver, Canada
  • P. Muggli
    MPI, Muenchen, Germany
 
  The AWAKE project at CERN is planned to study proton driven plasma wakefield acceleration. The proton beam from the SPS will be used in order to drive wakefields in a 10 m long Rb plasma cell. In the first phase of this experiment, scheduled in 2016, the self-modulation of the proton beam in the plasma will be studied in detail, while in the second phase an external electron beam will be injected into the plasma wakefield to probe the acceleration process. The installation of AWAKE in the former CNGS experimental area and the required optics flexibility define the tight boundary conditions to be fulfilled by the electron beam line design. The transport of low energy (10-20 MeV) bunches of 1.25·109 electrons and the synchronous copropagation with much higher intensity proton bunches (3E11) determines several technological and operational challenges for the magnets and the beam diagnostics. The current status of the electron line layout and the associated equipments are presented in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-WEPWA039  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)