Author: Jones, J.K.
Paper Title Page
MOPJE084 Particle-in-cell Simulations of a Plasma Lens at Daresbury Laboratory 518
 
  • K. Hanahoe, Ö. Mete, G.X. Xia
    UMAN, Manchester, United Kingdom
  • D. Angal-Kalinin, J.K. Jones
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • J.D.A. Smith
    TXUK, Warrington, United Kingdom
 
  Feasibility of a focusing element using the transverse fields provided by a plasma cell was studied numerically. In this paper, an experimental set up is proposed for various beam parameters available from the VELA and CLARA beam lines at Daresbury Laboratory. 2D simulation results from VSim, and expected results from planned measurement stations are presented. Field properties and the advantages and disadvantages of such an instrument compared to conventional focusing elements are discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-MOPJE084  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPJE054 Developments in CLARA Accelerator Design and Simulations 1744
 
  • P.H. Williams, D. Angal-Kalinin, A.D. Brynes, F. Jackson, J.K. Jones, J.W. McKenzie, B.L. Militsyn, B.D. Muratori, N. Thompson
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • S. Spampinati
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
 
  We present recent developments in the accelerator design of CLARA (Compact Linear Accelerator for Research and Applications), the proposed UK FEL test facility at Daresbury Laboratory. The layout changes include a dedicated collimator in CLARA front end to provide some control over the dark current, changes to low energy diagnostics section and modifications to FEL modules. The progress in the design simulations mainly focus on injector simulations incorporating wake fields in ASTRA, comparison of using ELEGANT and CSRTRACK for the Variable Bunch Compressor and first considerations of requirement of laser heater for CLARA.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPJE054  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPJE056 VELA Machine Development and Beam Characterisation 1752
 
  • D.J. Scott, D. Angal-Kalinin, A.D. Brynes, F. Jackson, J.K. Jones, A. Kalinin, S.L. Mathisen, J.W. McKenzie, B.L. Militsyn, B.D. Muratori, T.C.Q. Noakes, L.K. Rudge, E. Sneddon, M. Surman, R. Valizadeh, A.E. Wheelhouse, P.H. Williams
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • S.D. Barrett, C.P. Topping, A. Wolski
    The University of Liverpool, Liverpool, United Kingdom
  • A. Lyapin
    JAI, Egham, Surrey, United Kingdom
  • M.D. Roper
    STFC/DL, Daresbury, Warrington, Cheshire, United Kingdom
  • C.P. Topping, A. Wolski
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • E. Yamakawa
    Royal Holloway, University of London, Surrey, United Kingdom
 
  Recent developments on the VELA (Versatile Electron Linear Accelerator) RF photo-injector at Daresbury Laboratory are presented. These are three-fold; commissioning/installation, characterising and providing beam to users. Measurements for characterising the dark current (DC), 4-D transverse emittance, lattice functions and photoinjector stability are presented. User beam set ups to provide beam for electron diffraction and Cavity Beam Position Monitor development are summarised.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPJE056  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPWI017 Single-shot Multi-MeV Ultrafast Electron Diffraction on VELA at Daresbury Laboratory 2278
 
  • L.K. Rudge, D. Angal-Kalinin, J.A. Clarke, F. Jackson, J.K. Jones, A. Kalinin, S.L. Mathisen, J.W. McKenzie, B.L. Militsyn, B.D. Muratori, T.C.Q. Noakes, Y.M. Saveliev, D.J. Scott, P.H. Williams
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • P. Aden, R.J. Cash, D.M.P. Holland, M.D. Roper
    STFC/DL, Daresbury, Warrington, Cheshire, United Kingdom
  • P.D. Lane, D.A. Wann
    University of York, York, United Kingdom
  • M. Surman
    STFC/DL/SRD, Warrington, Cheshire, United Kingdom
  • J.G. Underwood
    UCL, London, United Kingdom
 
  Funding: This work was funded by STFC
Accelerator based Ultrafast Electron Diffraction (UED) is a technique for obtaining static structures and for studying sub-100 fs dynamic structural changes on the atomic scale. In this paper we present the first electron diffraction results obtained from the VELA accelerator in 2014. The accelerator was operated to provide typically 4MeV/c electron bunches. Diffraction patterns were observed with <<1 pC transported to the detection screen. Single shot and multi-shot accumulated diffraction data are presented from single crystal and polycrystalline samples, including Au, Al, Pt and C. Contamination of the diffraction pattern with dark current contributions is an issue. A variable size aperture directly in front of the sample offers some mitigation, but at the expense of reduced charge contributing to the diffraction pattern. We discuss future developments for electron diffraction on VELA including further beam optimization, measurement of bunch length with a newly installed Transverse Deflecting Cavity, and the planned developments for pump-probe studies.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPWI017  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)