Paper | Title | Page |
---|---|---|
MOPJE062 | Testing Aspects of Advanced Coherent Electron Cooling Technique | 445 |
|
||
An advanced version of the coherent-electron cooling based on the microbunching instability was proposed in *. This approach promised to significantly increase the bandwidth of the system and, therefore, significantly shorter cooling time in high energy hadron colliders. In this paper we present our plans of simulating and testing the key aspects of this proposed technique using the set-up of the coherent-electron-cooling proof-of-principle experiment at BNL.
* D.F. Ratner, Phys. Rev. Lett. 111, 084802 (2013) |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-MOPJE062 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPMN027 | Optimization of Dynamic Aperture for Hadron Lattices in eRHIC | 757 |
|
||
Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. The potential upgrade of the Relativistic Heavy Ion Collider (RHIC) to an electron ion collider (eRHIC) involves numerous extensive changes to the existing collider complex. The expected very high luminosity is planned to be achieved at eRHIC with the help of squeezing the beta function of the hadron ring at the IP to a few cm, causing a large rise of the natural chromaticities and thus bringing with it challenges for the beam long term stability (Dynamic aperture). We present our effort to expand the DA by carefully tuning the nonlinear magnets thus controlling the size of the footprints in tune space and all lower order resonance driving terms. We show a reasonably large DA through particle tracking over millions of turns of beam revolution. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-MOPMN027 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPMN028 | Design of Bunch Compressing System with Suppression of Coherent Synchrotron Radiation for ATF Upgrade | 760 |
|
||
Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. Brookhaven National Laboratory Accelerator Test Facility (BNL ATF) is in the process of upgrading to ATF2 with higher electron beam energy thus expanding its capabilities. For the fully upgraded electron beam (500 MeV), it will be of great interest to compress the bunch to femto-seconds scale while maintaining high peak current (~7,800 amps) for users. A bunch compressor composed of magnetic chicanes can be utilized for this purpose. However, during such strong compression, beam quality can easily be deteriorated by Coherent Synchrotron Radiation (CSR). In this paper, we present our study for a bunch compressor where this CSR effect is compensated through careful manipulation of phase space. We also show a beam with good quality is preserved through the system by presenting a start to end simulation. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-MOPMN028 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPWA020 | BNL ATF II Beamlines Design | 1445 |
|
||
Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. The Brookhaven National Lab. Accelerator Test Facility (BNL ATF) is currently undergoing a major upgrade (ATF-II). Together with a new location and much improved facilities, the ATF will see an upgrade in its major capabilities: electron beam energy and quality and CO2 laser power. The electron beam energy will be increased in stages, first to 100-150 MeV followed by a further increase to 500 MeV. Combined with the planned increase in CO2 laser power (from 1-100 TW), the ATF-II will be a powerful tool for Advanced Accelerator research. A high-brightness electron beam, produced by a photocathode gun, will be accelerated and optionally delivered to multiple beamlines. Besides the energy range (up to a possible 500 MeV in the final stage) the electron beam can be tailored to each experiment with options such as: small transverse beam size (<10 um), flat beam, short bunch length (<100 fs) and, combined short and small bunch options. This report gives a detailed overview of the ATF-II capabilities and beamlines configuration. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPWA020 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPWI043 | Chromatic Effects in Long Periodic Transport Channels | 2342 |
|
||
Long periodic transport channels are frequently used in accelerator complexes and suggested for using in high-energy ERLs for electron-hadron colliders. Without proper chromaticity compensation, such transport channels exhibit high sensitivity to the random orbit errors causing significant emittance growth. Such emittance growth can come from both the correlated and the uncorrelated energy spread. In this paper we present results of our theoretical and numerical studies of such effects and develop a criteria for acceptable chromaticity in such channels | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPWI043 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPF144 | Analysis of FEL-based CeC Amplification at High Gain Limit | 4063 |
|
||
Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. An analysis of CeC amplifier based on 1D FEL theory was previously performed with exact solution of the dispersion relation, assuming electrons having Lorentzian energy distribution *. At high gain limit, the asymptotic behavior of the FEL amplifier can be better understood by Taylor expanding the exact solution of the dispersion relation with respect to the detuning parameter **. In this work, we make quadratic expansion of the dispersion relation for Lorentzian energy distribution * *** and investigate how longitudinal space charge and electrons’ energy spread affect the FEL amplification process. * G. Wang, PhD Thesis, SUNY Stony Brook, 2008. ** G. Stupakov, M.S. Zolotorev, Comment on “Coherent Electron Cooling”, PRL 110 (2013) 269503. *** E.L. Saldin, E.A. Schneidmiller, M.V. Yurkov, The Physics of Free Electron Lasers, 1999. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-THPF144 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |