Author: Hayashi, K.
Paper Title Page
TUPJE005 Development of Pulsed Multipole Magnet for Aichi SR Storage Ring 1616
 
  • K. Ito, M. Hosaka, A. Mano, T. Takano, Y. Takashima
    Nagoya University, Nagoya, Japan
  • K. Hayashi, M. Katoh
    UVSOR, Okazaki, Japan
  • N. Yamamoto
    KEK, Ibaraki, Japan
 
  The Aichi synchrotron radiation (Aichi SR) center is an industrial oriented synchrotron light source facility. The electron energy and circumference of the storage ring are 1.2 GeV and 72 m. The natural emittance is 53 nm-rad. Since the pulsed multipole injection scheme provides great advantages for relatively smaller SR rings*, we are developing a pulsed multipole injection system for Aichi SR storage ring. In this system, it is essential to minimize the perturbation to the stored beam. To realize the required performances, we have to minimize the residual field at stored beam position, taken into account the field generated by the copper current lead of the input terminal. In addition, we carried out the analytical calculation to estimate the magnet field due to the current lead and optimized the geometrical structure of them. Construction of the multipole magnet will be completed in March 2015 and the field measurement will be carried out in April. In this presentation, we report the detail of the magnet design and the measurement results of pulsed magnetic field for the manufactured magnet.
* N. Yamamoto, et. al., NIM A 767, 26-33 (2014)
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPJE005  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPJE006 Recent Developments of UVSOR-III 1619
 
  • M. Katoh, K. Hayashi, J. Yamazaki
    UVSOR, Okazaki, Japan
  • M. Adachi, T. Konomi, N. Yamamoto
    KEK, Ibaraki, Japan
  • M. Hosaka, Y. Takashima
    Nagoya University, Nagoya, Japan
 
  A 750 MeV low energy synchrotron light source, UVSOR, has been operational since 1983. About ten years after the first major upgrade in 2003, the second major upgrade was carried out in 2012, in which all the bending magnets were replaced with combined function ones and a new in-vacuum undulator was installed in the last straight section reserved for undulators. After this upgrade, the light source, UVSOR-III, has been operational with small emittance of 17 nm-rad, with six undulators, and fully with the top-up injection at 300mA. Adding to the present status of the accelerator, most recent progresses in the pulsed sextupole magnet for the beam injection and in the coherent light source development station will be presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPJE006  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)