Author: Halavanau, A.
Paper Title Page
TUPMA007 Numerical Investigation of a Cascaded Longitudinal Space-Charge Amplifier at the Fermilab's Advanced Superconducting Test Accelerator 1850
 
  • A. Halavanau, P. Piot
    Northern Illinois University, DeKalb, Illinois, USA
  • P. Piot
    Fermilab, Batavia, Illinois, USA
 
  In a cascaded longitudinal space-charge amplifier (LSCA), initial density noise in a relativistic e-beam is amplified via the interplay of longitudinal space charge forces and properly located dispersive sections. This type of amplification process was shown to potentially result in large final density modulations * compatible with the production of broadband electromagnetic radiation. The technique was recently demonstrated in the optical domain **. In this paper we investigate, via numerical simulations, the performances of a cascaded LSCA beamline at the Fermilab's Advanced Superconducting Test Accelerator (ASTA). We especially explore the properties of the produced broadband radiation. Our studies have been conducted with an effective three-dimensional space-charge algorithm.
* Dohlus, M. et al. Proc. SPIE 8779. doi:10.1117/12.2017369
** Marinelli, A. et al. Phys. Rev. Lett. 110, 264802 (2013)
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPMA007  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMA008 Numerical Study of Three Dimensional Effects in Longitudinal Space-Charge Impedance 1853
 
  • A. Halavanau, P. Piot
    Northern Illinois University, DeKalb, Illinois, USA
  • P. Piot
    Fermilab, Batavia, Illinois, USA
 
  Longitudinal space-charge (LSC) effects are generally considered as detrimental in free-electron lasers as they can seed instabilities. Such "microbunching instabilities" were recently shown to be potentially useful to support the generation of broadband coherent radiation pulses. Therefore there has been an increasing interest in devising accelerator beamlines capable of sustaining this LSC instability as a mechanism to produce a coherent light source. To date most of these studies have been carried out with a one-dimensional impedance model for the LSC. In this paper we use a N-body "Barnes-Hut" algorithm * to simulate the 3D space charge force in the beam combined with Elegant ** and explore the limitation of the 1D model often used.
* Barnes, J. & Hut, P., Nature 324, 446-449, 1986.
** Borland, M., Advanced Photon Source LS-287, 2000.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPMA008  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)