Author: Gupta, R.C.
Paper Title Page
WEPTY064 Thermal-mechanical Analysis of the FRIB Nuclear Fragment Separator Dipole Magnet 3425
 
  • S.A. Kahn, A. Dudas, G. Flanagan
    Muons, Inc, Illinois, USA
  • R.C. Gupta
    BNL, Upton, Long Island, New York, USA
 
  Funding: This work was supported by the U.S. Department of Energy under Grant DE-SC-0006273
Dipole magnets in the fragment separator region of the Facility for Rare Isotope Beams (FRIB) are critical elements used to select the desired isotopes. These magnets are subjected to high radiation and heat loads. High temperature superconductors (HTS), which have been shown to be radiation resistant and can operate at 40 K where heat removal is substantially more efficient than 4.5 K where conventional superconductors such as NbTi and Nb3Sn operate, are proposed for the coils. The magnet coils carry large current and will be subjected to large Lorentz forces that must be constrained to avoid distortions of the coils. It is desirable to minimize the use of organic materials in the fabrication of this magnet because of the radiation environment. This paper will describe an approach to support the coils to minimize coil deformation and cryogenic heat loss.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-WEPTY064  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPWI053 HTS/lTS Hybrid High Field Superconducting Magnet Designs for the Proposed 100 TeV Proton Colliders 3609
 
  • R.C. Gupta, M. Anerella, A.K. Ghosh, W. Sampson, J. Schmalzle
    BNL, Upton, Long Island, New York, USA
  • J. Kolonko, D. Larson, R.M. Scanlan, R.J. Weggel, E. Willen
    Particle Beam Lasers, Inc., Northridge, California, USA
  • C.M. Rey
    e2P, Knoxville, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under contract Number DE-SC0012704, with the U.S. Department of Energy and STTR contract DOE Grant Number DE-SC0011348.
Proposed proton-proton colliders with a center-of-mass energy up to 100 TeV in a tunnel of desired size require the dipole magnets to be of very high field–20 teslas in some proposals. This field is beyond the limit of present conventional Low Temperature Superconductors (LTS) and requires using High Temperature Superconductors (HTS). The preliminary magnetic design presented in this paper is an HTS/LTS hybrid design with high strength HTS tape used in higher field regions and less expensive LTS in lower field regions, with a goal of optimizing the performance while reducing the cost. A major concern in the magnets built with the HTS tape is the large field errors associated with the conductor magnetization. The strategy presented here aims to reduce those errors considerably. This paper also presents a proof-of-principle design and program to experimentally evaluate that concept.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-WEPWI053  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)