Paper | Title | Page |
---|---|---|
WEPTY072 | Update on Nitrogen-doped 9-cell Cavity Performance in the Cornell Horizontal Test Cryomodule | 3446 |
|
||
Funding: U.S. Department of Energy The Linac Coherent Light Source-II (LCLS-II) is a new x-ray source that is planned to be constructed in the existing SLAC tunnel. To meet the quality factor specifications (2.7x 1010 at 2.0 K and 16 MV/m), nitrogen-doping has been proposed as a preparation method for the SRF cavities. In order to demonstrate the feasibility of these goals, four 9-cell cavity tests have been completed in the Cornell Horizontal Test Cryomodule (HTC), which serves as a test bench for the full LCLS-II cryomodule. Here we report on the most recent two cavity tests in the HTC: one cavity nitrogen-doped at Cornell and tested with high Q input coupler and then again tested with high power LCLS-II input coupler. Transition to test in horizontal cryomodule resulted in no degradation in Q0 from vertical test. Additionally, increased dissipated power due to the high power input coupler was small and in good agreement with simulations. These results represent a crucial step on the way to demonstrating technical readiness for LCLS-II. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-WEPTY072 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPTY073 | Update on Nitrogen Doping: Quench Studies and Sample Analysis | 3450 |
|
||
Funding: U.S. Department of Energy, NSF Recently, nitrogen-doping of niobium has emerged as a promising preparation method for SRF cavities to reach higher intrinsic quality factors than can be reached with typical cavity preparation. Nitrogen-doped cavities prepared at Cornell have shown quality factors higher than 4x1010 at 2.0 K and 16 MV/m. While Q results have been very exciting, a reduced quench field currently limits nitrogen-doped cavities with quench typically occurring between 15 and 25 MV/m. Here we report on recent results from Cornell on single-cell and 9-cell cavities, focusing on new preparations and maximum and critical fields. First we discuss results from over-doping niobium with nitrgoen, baking nitrogen-doped cavities at 120C, and doping with Argon. For a subset of these cavities we show results from quench studies that have been completed using temperature mapping. Finally, we present the first measurements of the higher critical field, Hc2, for nitrogen-doped niobium samples. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-WEPTY073 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPTY075 | Hc2 Measurements of Nb3Sn and Nitrogen-doped Niobium using Physical Property Measurement System | 3458 |
|
||
The measurement of the upper critical field of a type-2 superconductor, Hc2, is an important step in determining its superconducting properties, and therefore its suitability as a material in SRF cavities. However, measuring Hc2 directly can be challenging, as performing electrical measurements causes changes in the very properties one seeks to measure. We present a method for extracting Hc2 from resistivity measurements made near the transition temperature for varied applied fields and excitation currents. We also present results of these measurements made on Nb3Sn and nitrogen-doped niobium. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-WEPTY075 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |