Paper |
Title |
Page |
TUPTY051 |
Injection Protection Upgrade for the HL-LHC |
2136 |
|
- J.A. Uythoven, N. Biancacci, C. Bracco, L. Gentini, B. Goddard, A. Lechner, F.L. Maciariello, A. Perillo Marcone, B. Salvant, N.V. Shetty, G.E. Steele, F.M. Velotti
CERN, Geneva, Switzerland
- O. Frasciello, M. Zobov
INFN/LNF, Frascati (Roma), Italy
|
|
|
The injector complex of the LHC is undergoing important changes in the light of the LIU project to provide brighter beams to the LHC. For this reason and as part of the High Luminosity LHC project the injection protection system of the LHC will be upgraded in the Long Shutdown 2 (2018 - 2019) to be able to protect downstream elements against injection failures with the high brightness, high intensity HL-LHC beams. The upgraded LHC injection protection system will consist of a segmented injection protection absorber TDIS, and auxiliary collimators and masks. The layout modifications are described, and the machine element protection and absorber jaw robustness studies are presented for the new systems.
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-IPAC2015-TUPTY051
|
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|
WEPMN067 |
Upgrade of the TCDQ Diluters for the LHC Beam Dump System |
3079 |
|
- M.G. Atanasov, W. Bartmann, J. Borburgh, C. Boucly, C. Bracco, L. Gentini, B. Moles, W.J.M. Weterings
CERN, Geneva, Switzerland
|
|
|
The TCDQ diluters are installed as part of the LHC beam dump system to protect the Q4 quadrupole and other downstream elements during a beam dump that is not synchronised with the abort gap, or in case of erratic firing of the extraction kickers. These diluter elements installed during Run 1 were compatible with beam up to 60 % of the nominal intensity, which was insufficient for the second run of the LHC. This paper describes the requirements for the upgrade done during the First Long Shutdown (LS1), to make the TCDQ compatible with the full 7 TeV LHC beam at intensities required for the future runs of the machine. Subsequently the mechanical design changes, implementation and commissioning of the TCDQ are reported.
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-IPAC2015-WEPMN067
|
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|