Author: Gebel, R.
Paper Title Page
THPF029 Preparation of an Ion Source for an Extra Low Energy Synchrotron 3755
 
  • R. Gebel, O. Felden, R. Maier, S. Mey, D. Prasuhn
    FZJ, Jülich, Germany
 
  Funding: The work is supported within the framework of the Helmholtz Association’s Accelerator Research and Development (ARD) program.
ELENA* is a compact ring for cooling and further deceleration of 5.3 MeV antiprotons delivered by the CERN Antiproton Decelerator (AD) down to 100 keV. Because of the long AD cycle of 100 s, it is foreseen to use a source for protons and H with a kinetic energy of 100 keV for commissioning and start-ups. The source, designed to provide 0.2 to 2.0μsec pulses with 3x107 ions, is based on a proven multicusp volume source used at the COSY/Jülich** injector cyclotron. The source and its auxiliaries were refurbished, upgraded to ±100 keV operation at the Forschungszentrum Jülich and have been set in operation at CERN in April 2015 for first tests of new equipments.
* V. Chohan [ed.], ELENA ring and its Transfer Lines – Design Report
Geneva 2014, DOI 10.5170/CERN-2014-002
** R. Maier Nucl. Instr. Meth. A 390 (1997) P.1.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-THPF029  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPF031 Towards an RF Wien-Filter for EDM Experiments at COSY 3761
 
  • S. Mey, R. Gebel
    FZJ, Jülich, Germany
 
  Funding: The work is supported within the framework of the Helmholtz Association’s Accelerator Research and Development (ARD) program.
The JEDI Collaboration (Jülich Electric Dipole Moment (EDM) Investigations) is developing tools for the measurement of permanent EDMs of charged, light hadrons in storage rings. The Standard Model predicts unobservably small values for the EDM, but a non-vanishing EDM can be detected by measuring a tiny build-up of vertical polarization in a beforehand horizontally polarized beam. This technique requires a spin tune modulation by an RF Dipole without any excitation of beam oscillations. In the course of 2014, a prototype RF ExB-Dipole has been successfully commissioned and tested. To determine the characteristics of the device, the force of a radial magnetic field is canceled out by a vertical electric one. In this configuration, the dipole fields form a Wien-Filter that directly rotates the particles' polarization vector. We verified that the device can be used to continuously flip the vertical polarization of a 970 MeV(c deuteron beam without exciting any coherent beam oscillations. For a first EDM Experiment, the RF ExB-Dipole in Wien-Filter Mode is going to be rotated by 90° around the beam axis and will be used for systematic investigations of sources for false EDM signals.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-THPF031  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPF034 Injection Kicker for HESR at FAIR using Semi-Conductor Switches 3770
 
  • R. Tölle, N. Bongers, F.M. Esser, R. Gebel, S. Hamzic, H. Jagdfeld, F. Klehr, B. Laatsch, L. Reifferscheidt, M. Retzlaff, L. Semke, H. Soltner, H. Stockhorst
    FZJ, Jülich, Germany
  • S. Antoine, W. Beeckman, P. Bocher, O. Cosson, P. Jivkov, D. Ramauge
    Sigmaphi, Vannes, France
 
  The High Energy Storage Ring for Antiprotons is going to be built at FAIR in Darmstadt on the extended GSI campus. It will receive the antiprotons via the Collector Ring (CR). Using a barrier bucket, the circulating particles will be compressed into one half of the circumference. New particles have to be injected into the remaining half. Thus rise and fall time must not exceed 220 ns each with a flat top of 500 ns. A kick angle of 6.4 mrad is required at 13 Tm magnetic rigidity. The system must allow pole reversal for injection of positively charged particles. With a voltage lower than 40 kV a semi-conductor based pulser is going to be realized. Boundary conditions and the status of preparatory work are described. Simulation results and available measurements are presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-THPF034  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)