Paper | Title | Page |
---|---|---|
WEPTY066 | T-Maps Taken During Cool-down of an SRF cavity: a Tool to Understand Flux Trapping | 3431 |
|
||
During the past years the impact of cool-down procedures on the flux trapping properties of superconducting cavities have been under investigation. We have measured temperature distributions of a multi-cell cavity using a T-map set-up to understand the transition to superconductivity in detail. We will report how the spatial disorder is affected by the cool-down speed and relate our findings to data on flux pinning. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-WEPTY066 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPTY069 | Complection of the Cornell High Q CW Full Linac Cryo-module | 3440 |
|
||
Cornell University has finished building a 10 m long superconducting accelerator module as a prototype of the main linac of a proposed ERL facility. This module houses 6 superconducting cavities- operated at 1.8 K in continuous wave (CW) mode - with individual HOM absorbers and one magnet/ BPM section. In pushing the limits, a high quality factor of the cavities (2x1010) and high beam currents (100 mA accelerated plus 100 mA decelerated) were targeted. We will review the design shortly and present the results of the components tested before the assembly. This includes data of the quality-factors of all 6 cavities that we produced and treated in-house, the HOM absorber performance measured with beam on a test set-up as well as testing of the couplers and the tuners. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-WEPTY069 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPTY072 | Update on Nitrogen-doped 9-cell Cavity Performance in the Cornell Horizontal Test Cryomodule | 3446 |
|
||
Funding: U.S. Department of Energy The Linac Coherent Light Source-II (LCLS-II) is a new x-ray source that is planned to be constructed in the existing SLAC tunnel. To meet the quality factor specifications (2.7x 1010 at 2.0 K and 16 MV/m), nitrogen-doping has been proposed as a preparation method for the SRF cavities. In order to demonstrate the feasibility of these goals, four 9-cell cavity tests have been completed in the Cornell Horizontal Test Cryomodule (HTC), which serves as a test bench for the full LCLS-II cryomodule. Here we report on the most recent two cavity tests in the HTC: one cavity nitrogen-doped at Cornell and tested with high Q input coupler and then again tested with high power LCLS-II input coupler. Transition to test in horizontal cryomodule resulted in no degradation in Q0 from vertical test. Additionally, increased dissipated power due to the high power input coupler was small and in good agreement with simulations. These results represent a crucial step on the way to demonstrating technical readiness for LCLS-II. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-WEPTY072 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPTY073 | Update on Nitrogen Doping: Quench Studies and Sample Analysis | 3450 |
|
||
Funding: U.S. Department of Energy, NSF Recently, nitrogen-doping of niobium has emerged as a promising preparation method for SRF cavities to reach higher intrinsic quality factors than can be reached with typical cavity preparation. Nitrogen-doped cavities prepared at Cornell have shown quality factors higher than 4x1010 at 2.0 K and 16 MV/m. While Q results have been very exciting, a reduced quench field currently limits nitrogen-doped cavities with quench typically occurring between 15 and 25 MV/m. Here we report on recent results from Cornell on single-cell and 9-cell cavities, focusing on new preparations and maximum and critical fields. First we discuss results from over-doping niobium with nitrgoen, baking nitrogen-doped cavities at 120C, and doping with Argon. For a subset of these cavities we show results from quench studies that have been completed using temperature mapping. Finally, we present the first measurements of the higher critical field, Hc2, for nitrogen-doped niobium samples. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-WEPTY073 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |