Author: Freemire, B.T.
Paper Title Page
MOAD2 RF Breakdown of 805 MHz Cavities in Strong Magnetic Fields 53
 
  • D.L. Bowring, A.V. Kochemirovskiy, M.A. Leonova, A. Moretti, M.A. Palmer, D.W. Peterson, K. Yonehara
    Fermilab, Batavia, Illinois, USA
  • B.T. Freemire
    IIT, Chicago, Illinois, USA
  • A.A. Haase
    SLAC, Menlo Park, California, USA
  • P.G. Lane, Y. Torun
    Illinois Institute of Technology, Chicago, Illlinois, USA
  • D. Stratakis
    BNL, Upton, Long Island, New York, USA
 
  Ionization cooling of intense muon beams requires the operation of high-gradient, normal-conducting RF structures in the presence of strong magnetic fields. We have measured the breakdown rate in several RF cavities operating at several frequencies. Cavities operating within solenoidal magnetic fields B > 0.25 T show an increased RF breakdown rate at lower gradients compared with similar operation when B = 0 T. Ultimately, this breakdown behavior limits the maximum safe operating gradient of the cavity. Beyond ionization cooling, this issue affects the design of photoinjectors and klystrons, among other applications. We have built an 805 MHz pillbox-type RF cavity to serve as an experimental testbed for this phenomenon. This cavity is designed to study the problem of RF breakdown in strong magnetic fields using various cavity materials and surface treatments, and with precise control over sources of systematic error. We present results from tests in which the cavity was run with all copper surfaces in a variety of magnetic fields.  
slides icon Slides MOAD2 [10.792 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-MOAD2  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMN013 Simulation of Beam-Induced Plasma in Gas Filled Cavities 731
 
  • K. Yu, V. Samulyak
    SBU, Stony Brook, USA
  • M. Chung
    UNIST, Ulsan, Republic of Korea
  • B.T. Freemire
    IIT, Chicago, Illinois, USA
  • V. Samulyak
    BNL, Upton, Long Island, New York, USA
  • A.V. Tollestrup, K. Yonehara
    Fermilab, Batavia, Illinois, USA
 
  Understanding of the interaction of muon beams with plasma in muon cooling devices is important for the optimization of the muon cooling process. SPACE, a 3D electromagnetic particle-in-cell (EM-PIC) code, is used for the simulation support of the experimental program on the hydrogen gas filled RF cavity in the Mucool Test Area (MTA) at Fermilab. We have investigated the plasma dynamics in the RF cavity including the process of power dump by plasma (plasma loading), recombination of plasma, and plasma interaction with dopant material. By comparison with experiments in the MTA, simulations suggest several unknown properties of plasma such as the effective recombination rate, the electron attachment time on dopant molecule, and the ion - ion recombination rate in the plasma.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-MOPMN013  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPTY074 Muon Beam Emittance Evolution in the Helical Ionization Cooling Channel for Bright Muon Sources 2203
 
  • K. Yonehara, C.Y. Yoshikawa
    Fermilab, Batavia, Illinois, USA
  • C.M. Ankenbrandt, R.P. Johnson, S.A. Kahn
    Muons, Inc, Illinois, USA
  • M. Chung
    UNIST, Ulsan, Republic of Korea
  • Y.S. Derbenev, A.V. Sy
    JLab, Newport News, Virginia, USA
  • B.T. Freemire
    IIT, Chicago, Illinois, USA
 
  The six-dimensional ionization cooling is essential to design a bright muon source. A geometry constraint is a challenge issue in a compact helical cooling channel (HCC). Especially, the HCC requires a large bore helical magnet and a compact helical RF system to incorporate the RF into the magnet chamber. A new emittance evolution has been designed to mitigate the geometry constraint. The HCC was functionally separated into three parts sections. The lattice at the initial section provides a large transverse acceptance by using a strong helical focus magnet. Once the transverse beam size is small enough to get into the compact RF the HCC lattice in the middle section generates a large longitudinal beta tune to dominate the longitudinal cooling. Consequently, the longitudinal emittance becomes smaller than the transverse one at the end of middle section. In the final section, the magnetic field strength is gradually reduced to match out the helical channel to the straight solenoid. As a result, the emittance exchange takes place and the final transverse emittance becomes smaller than the longitudinal one. The new emittance evolution scenario will be discussed in this presentation.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPTY074  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPWI059 Influence of Plasma Loading in a Hybrid Muon Cooling Channel 2381
 
  • D. Stratakis
    BNL, Upton, Long Island, New York, USA
  • B.T. Freemire
    IIT, Chicago, Illinois, USA
  • K. Yonehara
    Fermilab, Batavia, Illinois, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
In a hybrid 6D cooling channel, cooling is accomplished by reducing the beam momentum through ionization energy loss in wedge absorbers and replenishing the momentum loss in the longitudinal direction with gas-filled rf cavities. While the gas acts as a buffer to prevent rf breakdown, gas ionization may also occur as the beam passes through a HPRF cavity. The resulting plasma, may gain substantial energy from the rf electric field which it can transfer via collisions to the gas, an effect known as plasma loading. In this paper, we investigate the influence of plasma loading on the cooling performance of a rectilinear hybrid channel. With the aid of numerical simulations we examine the sensitivity in cooling performance and plasma loading to key parameters such as the rf gradient and gas pressure.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPWI059  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPTY030 Breakdown Characterization in 805 MHz Pillbox-like Cavity in Strong Magnetic Fields 3335
 
  • A.V. Kochemirovskiy, D.L. Bowring, A. Moretti, D.W. Peterson, K. Yonehara
    Fermilab, Batavia, Illinois, USA
  • M. Chung
    UNIST, Ulsan, Republic of Korea
  • G. Flanagan, G.M. Kazakevich
    Muons, Inc, Illinois, USA
  • B.T. Freemire
    IIT, Chicago, Illinois, USA
  • A.V. Kochemirovskiy
    University of Chicago, Chicago, Illinois, USA
  • Y. Torun
    Illinois Institute of Technology, Chicago, Illlinois, USA
 
  RF Breakdown in strong magnetic fields has a negative impact on a cavity performance. The MuCool Test Area at Fermilab has unique capabilities that that allow us to study the effects of static magnetic field on RF cavity operation. We have tested an 805 MHz pillbox-like cavity in external magnetic fields up to 5T. Results confirm our basic model of breakdown in strong magnetic fields. We have measured maximum achievable surface gradient dependence on external static magnetic field. Damage inspection of cavity walls revealed a unique observed breakdown pattern. We present the analysis of breakdown damage distribution and propose the hypothesis to explain certain features of this distribution  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-WEPTY030  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPTY032 MICE Cavity Installation and Commissioning/Operation at MTA 3342
 
  • M.A. Leonova, M. Backfish, D.L. Bowring, A.V. Kochemirovskiy, A. Moretti, D.W. Peterson, M. Popovic, Y. Torun, K. Yonehara
    Fermilab, Batavia, Illinois, USA
  • B.T. Freemire
    IIT, Chicago, Illinois, USA
  • C. Hunt
    Imperial College of Science and Technology, Department of Physics, London, United Kingdom
  • P.G. Lane
    Illinois Institute of Technology, Chicago, Illinois, USA
  • T.H. Luo
    LBNL, Berkeley, California, USA
  • D.C. Speirs, C.G. Whyte
    USTRAT/SUPA, Glasgow, United Kingdom
  • T. Stanley
    STFC/RAL, Chilton, Didcot, Oxon, United Kingdom
 
  A first electropolished 201-MHz RF cavity for the international Muon Ionization Cooling Experiment (MICE) has been assembled inside a special vacuum vessel and installed at the Fermilab's MuCool Test Area (MTA). The cavity and the MTA hall have been equipped with numerous instrumentation to characterize cavity operation. The cavity has been commissioned to run at 14 MV/m gradient with no external magnetic field; it is also being commissioned in presence of fringe field of a multi-Tesla superconducting solenoid magnet, the condition in which cavity modules will be operated in the MICE cooling channel. The assembly, installation and operation of the Single-Cavity Module gave valuable experience for operation of full-size modules at MICE.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-WEPTY032  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPTY050 Low Powered RF Measurements of Dielectric Materials for use in High Pressure Gas Filled RF Cavities 3387
 
  • B.T. Freemire
    IIT, Chicago, Illinois, USA
  • G. Arriaga
    Northern Illinois Univerity, Dekalb, Illinois, USA
  • D.L. Bowring, A.V. Kochemirovskiy, A. Moretti, A.V. Tollestrup, Y. Torun, K. Yonehara
    Fermilab, Batavia, Illinois, USA
  • H.D. Phan
    McDaniel College, Westminster, USA
  • Y. Torun
    Illinois Institute of Technology, Chicago, Illlinois, USA
 
  The Helical Cooling Channel scheme envisioned for a Muon Collider or Neutrino Factory requires high pressure gas filled radio frequency cavities to operate in superconducting magnets. One method to shrink the radii of the cavities is to load them with a dielectric material. The dielectric constant, loss tangent, and dielectric strength are important in determining the most suitable material. Low powered RF measurements of the dielectric constant and loss tangent were taken for multiple purities of alumina and magnesium calcium titanate, as well as cordierite, forsterite, and aluminum nitride. Measurements of alumina were consistent with previously reported results. The results were used to design an insert for a high powered RF test that included sending beam through the cavity.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-WEPTY050  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)