Author: Franchetti, G.
Paper Title Page
MOPWA028 Resonance Compensation for High Intensity Bunched Beams 159
 
  • G. Franchetti, S. Aumon, F. Kesting, H. Liebermann, C. Omet, D. Ondreka, R. Singh
    GSI, Darmstadt, Germany
 
  Mitigation of periodic resonance crossing induced by space charge is foreseen  via classic resonance compensation. The effect of the space charge is, however,  not obvious on the effectiveness on the compensation scheme.  In this proceeding we report on an experimental campaign performed at SIS18  in an attempt to investigate experimentally the effect of space charge on the resonance  compensation. The experimental results and their consequences are discussed  through numerical simulations.   
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-MOPWA028  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPJE073 The Extreme Beams Initiative in EuCARD-2 483
 
  • G. Franchetti, J. Struckmeier
    GSI, Darmstadt, Germany
  • K. Aulenbacher
    IKP, Mainz, Germany
  • F. Zimmermann
    CERN, Geneva, Switzerland
 
  EuCARD-2 is an Integration Activity on accelerator R&D co-funded within the European Union’s 7th Framework Programme. The Extreme Beams (XBEAM) network of EuCARD-2 extends, and goes beyond the scope of, the previous Networking Activities of CARE-HHH and EuCARD(-1) EuroLumi. XBEAM addresses, and pushes, all accelerator frontiers: luminosity, energy, beam power, beam intensity, and polarization. This is realized through five tasks: Coordination and Communication, Extreme Colliders (XCOL)m Extreme Performance Rings (XRING), Extreme SC Linacs (XLINAC), and Extreme Polarization (XPOL), respectively. In the first two years of EuCARD-2, XBEAM (co-)organised more than 15 topical workshops: the upgrade of  KEKB in Japan, crystal channelling, the advancement of the CERN facilities, e.g. LHC upgrades and the Future Circular Collider, magnet optimization, space-charge effects, the commissioning of proton linacs, with emphasis on the ESS, key questions for lepton spin polarization, storage rings for measuring the electric dipole moment of electrons or protons. This presentation reports the major achievements of the XBEAM activity from 2013 to 2015, and outlines the further plans through 2017.   
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-MOPJE073  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMA020 SIS100 Dipole Field Harmonics and Dynamic Aperture Calculations 2795
 
  • C. Omet, E.S. Fischer, G. Franchetti, V. Kornilov, A. Mierau, C. Roux, P. Schnizer, D. Schäfer, S. Sorge, P.J. Spiller, K. Sugita
    GSI, Darmstadt, Germany
 
  During the acceptance test of the First of Series (FoS) SIS100 super-ferric dipole, detailed field measurements have been done. The harmonic coefficients have been extracted from these and dynamic aperture simulations have been done which are presented here. Furthermore, geometric precision measurement tools for the magnet have been developed to track down the field errors to geometric errors. Finally, mitigation actions have been taken to reduce these errors during manufacturing to ensure the design beam survival rate in SIS100.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-WEPMA020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)