Paper | Title | Page |
---|---|---|
MOPMA013 | Experience with Round Beam Operation at the Advanced Photon Source | 562 |
|
||
Funding: Work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357 Very short Touschek lifetime becomes a common issue for next-generation ultra-low emittance storage ring light sources. In order to reach a longer beam lifetime, such a machine often requires operating with a vertical-to-horizontal emittance ratio close to an unity, i.e. a ‘‘round beam''. In tests at the APS storage ring, we determined how a round beam can be reached experimentally. Some general issues, such as beam injection, optics measurement and corrections, and orbit correction have been tested also. To demonstrate that a round beam was achieved, the beam size ratio is calibrated using beam lifetime measurement. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-MOPMA013 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPWI011 | Beam Stability R&D for the APS MBA Upgrade | 1167 |
|
||
Funding: Results shown in this report result from work performed at Argonne National Laboratory operated by UChicago Argonne, LLC, for the U.S. Department of Energy under contract DE-AC02-06CH11357. Beam diagnostics required for the APS MBA are driven by ambitious beam stability requirements. The major AC stability challenge is to correct rms beam motion to 10% the rms beam size at the insertion device source points from 0.01 to 1000 Hz. The vertical plane represents the biggest challenge for AC stability which is required to be 400 nm rms for a 4 micron vertical beam size. Long term drift over a period of 7 days is required to be 1 micron or less. Major diagnostics R&D components are improved rf beam position processing using commercially available fpga based bpm processors, new XRay beam position monitors sensitive only to hard X-rays, mechanical motion sensing and remediation to detect and correct long term drift and a new feedback system featuring a tenfold increase in sampling rate and a several-fold increase in the number of fast correctors and bpms. Feedback system development represents a major effort and we are pursuing development of a novel algorithm that integrates orbit correction for both slow and fast correctors down to DC simultaneously. Finally a new data acquisition system (DAQ) is being developed to acquire streaming data from all diagnostics. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-MOPWI011 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPJE065 | Multi-Bunch Stability Analysis of the Advanced Photon Source Upgrade Including the Higher-Harmonic Cavity | 1784 |
|
||
Funding: Work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357 Multi-bunch stability simulations were done for the very-low-emittance hybrid seven-bend-achromat (H7BA) lattice proposed for the Advanced Photon Source (APS) upgrade. The simulations, performed using tracking code elegant, were meant to determine whether the long-term wakefields of the higher-order modes (HOMs) of the main 352-MHz cavities will produce an instability. The multi-particle simulations include the important effects of the Higher-Harmonic Cavity (HHC) and the longitudinal impedance of the new vacuum chamber. These realistic simulations show that the HHC provides additional damping in the form of the Landau damping. Still, the HOMs may likely produce a multi-bunch instability which can be cured with more effective HOM damping or a longitudinal feedback system. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPJE065 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |