Paper |
Title |
Page |
TUPHA005 |
Tools for NSLS II Commissioning |
1971 |
|
- G.M. Wang, G. Bassi, A. Blednykh, W.X. Cheng, J. Choi, L.R. Dalesio, M.A. Davidsaver, J.H. De Long, K. Ha, Y. Hidaka, Y. Hu, Y. Li, D. Padrazo, S. Seletskiy, T.V. Shaftan, G. Shen, K. Shroff, O. Singh, T. Summers, Y. Tian, F.J. Willeke, H. Xu, L. Yang, X. Yang
BNL, Upton, Long Island, New York, USA
|
|
|
The National Synchrotron Light Source II (NSLS-II) is a state of the art 3 GeV third generation light source at Brookhaven National Laboratory. As many facilities worldwide, NSLS II uses the EPICS control system to monitor and control all accelerator hardware. Control system studio (CSS) is used for simple tasks such as monitoring, display, setting of PVs. browsing the historical data, et. al. For more complex accelerator physics applications, a collection of scripts are mainly written in Python and part from Matlab during commissioning. With the close collaboration and fully support from control group, more and more CSS features were developed for operation convenience and several high level applications are interfaced with users in CSS panels for daily use based on softiocs. This paper will present the tools that we have been using for commissioning.
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-IPAC2015-TUPHA005
|
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|
TUPHA007 |
NSLS II Booster Extended Integration Test |
1977 |
|
- G.M. Wang, B. Bacha, A. Blednykh, E.B. Blum, W.X. Cheng, J. Choi, L.R. Dalesio, M.A. Davidsaver, J.H. De Long, R.P. Fliller, G. Ganetis, W. Guo, K. Ha, Y. Hu, W. Louie, T.V. Shaftan, G. Shen, O. Singh, Y. Tian, F.J. Willeke, L. Yang, X. Yang
BNL, Upton, Long Island, New York, USA
- P.B. Cheblakov, A.A. Derbenev, A.I. Erokhin, S.E. Karnaev, S.V. Sinyatkin
BINP SB RAS, Novosibirsk, Russia
- V.V. Smaluk
DLS, Oxfordshire, United Kingdom
|
|
|
The National Synchrotron Light Source II (NSLS-II) is a state of the art 3 GeV third generation light source at Brookhaven National Laboratory. While the installation activities in the booster-synchrotron are nearly completed and waiting for the authorization to start the booster commissioning, the injector and accelerator physics group have engaged into the Integrated Testing phase. We did the booster commissioning with simulated beam signals, called extended integrated testing (EIT) to prepare for the booster ring commissioning. It is to make sure the device function along with utilities, timing system and control system, to calibrate diagnostics system, debug High Level Applications, test and optimize all the operation screens to reduce the potential problems during booster commissioning with beam.
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-IPAC2015-TUPHA007
|
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|