Author: Cybulski, T.
Paper Title Page
MOPMA005 Non-invasive Beam Profile Monitoring 537
 
  • C.P. Welsch, T. Cybulski, A. Jeff, V. Tzoganis, H.D. Zhang
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • T. Cybulski, A. Jeff, V. Tzoganis, C.P. Welsch, H.D. Zhang
    The University of Liverpool, Liverpool, United Kingdom
  • A. Jeff
    CERN, Geneva, Switzerland
  • V. Tzoganis
    RIKEN, Saitama, Japan
 
  Funding: Work supported by the Helmholtz Association under contract VH-NG-328, the EU under contracts 215080 and 289485, as well as the STFC Cockcroft core grant No. ST/G008248/1.
State-of-the-art high energy and high intensity accelerators require new approaches to transverse beam profile monitoring as many established techniques will no longer work due to the high power stored in the beam. In addition, many accelerator applications such as ion beam cancer therapy or material irradiation would benefit significantly from the availability of non-invasive beam profile monitors. Research in the QUASAR Group has focused on this area over the past 5 years. Two different approaches were successfully developed: Firstly, a supersonic gas jet-based monitor was designed and commissioned. It enables the detection of the 2-dimensional transverse beam profile of essentially any charged particle beam with negligible disturbance of the primary beam and accelerator vacuum. Secondly, a monitor based on the Silicon strip VELO detector, originally developed for the LHCb experiment, was tested as an online beam monitor at the Clatterbridge Cancer Center in the UK. The design of both monitors is presented in this contribution. Results from measurements are discussed and complemented by numerical studies into the performance limits of either technique.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-MOPMA005  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)