Paper | Title | Page |
---|---|---|
MOPWI021 | The LCLS-II LLRF System | 1195 |
|
||
Funding: This work was supported by the LCLS-II Project and the U.S. Department of Energy, Contract DE-AC02-76SF00515. The SLAC National Accelerator Laboratory is planning an upgrade (LCLS-II) to the Linear Coherent Light Source with a 4 GeV CW superconducting (SCRF) linac. The SCRF linac consists of 35 ILC style cryomodules (eight cavities each) for a total of 280 cavities. Expected cavity gradients are 16 MV/m with a loaded QL of ~ 4x107. The RF system will have 3.8 kW solid state amplifiers driving single cavities. To ensure optimum field stability a single source single cavity control system has been chosen. It consists of a precision four channel cavity receiver and RF stations (Forward, Reflected and Drive signals). In order to regulate the resonant frequency variations of the cavities due to He pressure, the tuning of each cavity is controlled by a Piezo actuator and a slow stepper motor. In addition the system (LLRF-amplifier-cavity) is being modeled and cavity microphonic testing has started. This paper describes the LLRF system under consideration, including recent modeling and cavity tests. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-MOPWI021 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPJE080 | First Beam and High-Gradient Cryomodule Commissioning Results of the Advanced Superconducting Test Accelerator at Fermilab | 1831 |
|
||
Funding: Operated by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the United States Department of Energy. The advanced superconducting test accelerator at Fermilab has accelerated electrons to 20 MeV and, separately, the International Linear Collider (ILC) style 8-cavity cryomodule has achieved the ILC performance milestone of 31.5 MV/m per cavity. When fully completed, the accelerator will consist of a photoinjector, one ILC-type cryomodule, multiple accelerator R&D beamlines, and a downstream beamline to inject 300 MeV electrons into the Integrable Optics Test Accelerator (IOTA). We report on the results of first beam, the achievement of our cryomodule to ILC gradient specifications, and near-term future plans for the facility. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPJE080 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |