Author: Cook, A.M.
Paper Title Page
WEPWA062 Design and High-Power Testing of a Hybrid Photonic Band-Gap (PBG) Accelerator Structure at 17 GHz 2646
 
  • J.X. Zhang, A.M. Cook, B.J. Munroe, M.A. Shapiro, R.J. Temkin, H. Xu
    MIT/PSFC, Cambridge, Massachusetts, USA
 
  Funding: This work was supported by the U.S. Department of Energy, Office of High Energy Physics under Award Number DE-SC0010075.
An overmoded hybrid Photonic Band Gap (HPBG) structure used as an accelerator cavity has been theoretically designed and high power tested at 17.1 GHz. The HPBG structure consists of a triangular lattice of dielectric (sapphire) and metallic (copper) rods. Due to the frequency selectivity, the hybrid PBG cavity can be operated in a TM02 mode. The maximum surface fields are on the triple point of the innermost row of the sapphire rods. The relatively high value of the surface fields resulted in a high breakdown rate (BDR) at a low gradient in the HPBG structure. Breakdown damage on the triple point edge and the metallization of copper onto the sapphire surface have been observed in the post-testing images. An improved HPBG design, that reduces the peak fields, has been developed. It will be built and tested in an effort to improve the HPBG performance.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-WEPWA062  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)