Paper | Title | Page |
---|---|---|
TUPWI039 | Modeling Crabbing Dynamics in an Electron-Ion Collider | 2333 |
|
||
Funding: *Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177. A local crabbing scheme requires π/2 (mod π) horizontal betatron phase advances from an interaction point (IP) to the crab cavities on each side of it. However, realistic phase advances generated by sets of quadrupoles, or Final Focusing Blocks (FFB), between the crab cavities located in the expanded beam regions and the IP differ slightly from π/2. To understand the effect of crabbing on the beam dynamics in this case, a simple model of the optics of the Medium Energy Electron-Ion Collider (MEIC) including local crabbing was developed using linear matrices and then studied numerically over multiple turns (1000 passes) of both electron and proton bunches. The same model was applied to both local and global crabbing schemes to determine the linear-order dynamical effects of the synchro-betatron coupling induced by crabbing. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPWI039 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPWI034 | Effects of Crab Cavities' Multipole Content in an Electron-Ion Collider | 3561 |
|
||
Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177. The impact on the beam dynamics of the Medium Energy Electron-Ion Colider (MEIC) due to the multipole content of the 750 MHz crab cavity was studied using thin multipole elements for 6D phase space particle tracking in ELEGANT. Target values of the sextupole component for the cavity’s field expansion were used to perform preliminary studies on the proton beam stability when compared to the case of pure dipole content of the rf kicks. Finally, important effects on the beam sizes due to non-linear components of the crab cavities’ fields were identified and some criteria for their future study were proposed. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-WEPWI034 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUYB3 | Progress on the Design of the Polarized Medium-energy Electron Ion Collider at JLab | 1302 |
|
||
Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177 and DE-AC02-06CH11357. The Medium-energy Electron Ion Collider (MEIC) at JLab is designed to provide high luminosity and high polarization needed to reach new frontiers in the exploration of nuclear structure. The luminosity, exceeding 1033 cm-2s−1 in a broad range of the center-of-mass (CM) energy and maximum luminosity above 1034 cm-2s−1, is achieved by high-rate collisions of short small-emittance low-charge bunches made possible by high-energy electron cooling of the ion beam and synchrotron radiation damping of the electron beam. The polarization of light ion species (p, d, 3He) can be easily preserved and manipulated due to the unique figure-8 shape of the collider rings. A fully consistent set of parameters have been developed considering the balance of machine performance, required technical development and cost. This paper reports recent progress on the MEIC accelerator design including electron and ion complexes, integrated interaction region design, figure-8-ring-based electron and ion polarization schemes, RF/SRF systems and ERL-based high-energy electron cooling. Luminosity performance is also presented for the MEIC baseline design. |
||
![]() |
Slides TUYB3 [6.245 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUYB3 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |