Paper |
Title |
Page |
TUBC3 |
Recent Results from FEL seeding at FLASH |
1366 |
|
- J. Bödewadt, S. Ackermann, R.W. Aßmann, N. Ekanayake, B. Faatz, G. Feng, I. Hartl, R. Ivanov, T. Laarmann, J.M. Müller, T. Tanikawa
DESY, Hamburg, Germany
- S. Ackermann, Ph. Amstutz, A. Azima, M. Drescher, L.L. Lazzarino, C. Lechner, Th. Maltezopoulos, V. Miltchev, T. Plath, J. Roßbach
Uni HH, Hamburg, Germany
- K.E. Hacker, S. Khan, R. Molo
DELTA, Dortmund, Germany
|
|
|
The free-electron laser facility FLASH at DESY operates since several years in SASE mode, delivering high-intensity FEL pulses in the extreme ultra violet and soft x-ray wavelength range for users. In order to get more control of the characteristics of the FEL pulses external FEL seeding has proven to be a reliable method to do so. At FLASH, an experimental setup to test several different external seeding methods has been installed since 2010. After successful demonstration of direct seeding at 38 nm, the setup is now being operated in HGHG and later EEHG mode. Furthermore, other studies on laser induced effects on the electron beam dynamics have been performed. In this contribution, we give an overview of recent experimental results on FEL seeding at FLASH.
|
|
|
Slides TUBC3 [6.651 MB]
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-IPAC2015-TUBC3
|
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|
TUPWA026 |
Simulation of Optical Transport Beamlines for High-quality Optical Beams for Accelerator Applications |
1462 |
|
- J. Bödewadt, N. Ekanayake
DESY, Hamburg, Germany
|
|
|
High-quality optical beams play already an important role in the field of particle accelerators which will most probably become even more prominent in the view of laser-driven particle accelerators. Nowadays, optical transport systems are needed for particle generation in photo injectors, for particle acceleration in laser-driven plasma wakefield accelerators, for particle beam diagnostics such as synchrotron radiation monitoring systems, or for particle manipulation schemes e.g. for external seeding of free-electron lasers. For the latter case, also the photon beam transport to the user end-stations requires dedicated optical transport system. The utilized wavelengths range from the hard x-ray up to the far-infrared spectral range. Parameters like surface quality, polarization effects, damage thresholds in- and out-of-vacuum, mechanical stability, dispersion effect etc. need to be studied for the variaty of applications. Here, we present the simulation results of the optical transport beamline for the seeding setup at FLASH and give a comparision to our measurement results.
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-IPAC2015-TUPWA026
|
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|
TUPWA038 |
Optics Compensation for Variable-gap Undulator Systems at FLASH |
1499 |
|
- Ph. Amstutz, C. Lechner, T. Plath
Uni HH, Hamburg, Germany
- S. Ackermann, J. Bödewadt, M. Vogt
DESY, Hamburg, Germany
|
|
|
Variable-gap undulator systems are widely used in storage rings and linear accelerators to generate soft- and hard x-ray radiation for the photon science community. For cases where the effect of undulator focusing significantly changes the electron beam optics, a compensation is needed in order to keep the optics constant in other parts of the accelerator. Since 2010, the free-electron laser (FEL) facility FLASH is equipped with two undulator sections along the same electron beamline. The first undulator is a variable-gap system used for seeding experiments, the second undulator is a fixed-gap system which serves the user facility with FEL radiation. Varying the gap in the first undulator will change the beam optics such that the FEL process in the second undulator is dramatically disturbed. For the correction of the beam optics an analytical model is used to generate feed forward tables which allows to make part of the beamline indiscernible for the subsequent sections. The method makes use of the implicit function theorem and can be used for any perturbation of the beam optics. Here, we present the method and its implementation as well as measurements performed at FLASH.
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-IPAC2015-TUPWA038
|
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|