Author: Barcikowski, A.
Paper Title Page
WEPTY008 Superconducting Harmonic Cavity for the Advanced Photon Source Upgrade 3267
 
  • M.P. Kelly, A. Barcikowski, J. Carwardine, Z.A. Conway, D. Horan, S.H. Kim, P.N. Ostroumov, G.J. Waldschmidt
    ANL, Argonne, Illinois, USA
  • J. Rathke, T. Schultheiss
    AES, Medford, New York, USA
 
  A new bunch lengthening cryomodule using a single-cell ‘higher-harmonic’ superconducting cavity (HHC) based on the TESLA shape and operating at the 4th harmonic (1408 MHz) of the main RF is under development at Argonne. The system will be used to improve the Touschek lifetime and increase the single-bunch current limit in the upgraded multibend achromat lattice of the Advanced Photon Source electron storage ring. The 4 K cryomodule will fit within one half of a straight section, ~2.5 meters, of the ring. The system will use a pair of moveable 20 kW (each) CW RF power couplers to adjust the loaded Q and extract power from the beam. This will provide the flexibility to adjust the impedance presented to the beam and run at various beam currents. Higher-order modes (HOMs) induced by the circulating electron beam will be extracted along the beam axis and damped using a pair of room temperature beam line absorbers. Engineering designs and the prototyping status for the cavity, power couplers and HOM absorbers are discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-WEPTY008  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPF108 EBIS Charge Breeder at ANL and its Integration into ATLAS 3969
 
  • A. Perry, A. Barcikowski, G.L. Cherry, C. Dickerson, B. Mustapha, P.N. Ostroumov
    ANL, Argonne, Illinois, USA
 
  Funding: This work was supported by the U.S. Department of Energy, Office of Nuclear Physics, under Contract DE-AC02-06CH11357.
An Electron Beam Ion Source charge breeder (EBIS-CB) has been developed to breed CARIBU radioactive beams at ATLAS and is in the final stages of off-line commissioning. Within the next year, the EBIS-CB will replace the existing ECR charge breeder to increase the intensity and improve the purity of reaccelerated radioactive ion beams. Integration of the new EBIS-CB requires: a. Building a compact fully electrostatic low energy beam transport line (LEBT) from CARIBU to the EBIS-CB that satisfies the spatial constraints and ensures the successful ion seeding into the EBIS trap. b. Modifications to the existing ATLAS LEBT to purify the EBIS beams by q/A selection and accommodate the injection of the charge bred ions into ATLAS. In this paper, we will describe the beam line design and present beam dynamics simulation results.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-THPF108  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)