Author: Aumon, S.
Paper Title Page
TUPTY060 The FCC-ee Study: Progress and Challenges 2165
 
  • M. Koratzinos
    DPNC, Genève, Switzerland
  • S. Aumon, C. Cook, A. Doblhammer, B. Härer, B.J. Holzer, R. Tomás, F. Zimmermann
    CERN, Geneva, Switzerland
  • A.V. Bogomyagkov, E.B. Levichev, D.N. Shatilov
    BINP SB RAS, Novosibirsk, Russia
  • M. Boscolo
    INFN/LNF, Frascati (Roma), Italy
  • L.E. Medina Medrano
    UGTO, Leon, Mexico
  • U. Wienands
    SLAC, Menlo Park, California, USA
 
  The FCC (future circular collider) study represents a vision for the next large project in high energy physics, comprising a 80-100 km tunnel that can house a future 100TeV hadron collider. The study also includes a high luminosity e+e collider operating in the centre-of-mass energy range of 90-350 GeV as a possible intermediate step, the FCC-ee. The FCC-ee aims at definitive electro-weak precision measurements of the Z, W, H and top particles, and search for rare phenomena. Although FCC-ee is based on known technology, the goal performance in luminosity and energy calibration make it quite challenging. During 2014 the study went through an exploration phase and during the next three years a conceptual design report will be prepared.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPTY060  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPWA028 Resonance Compensation for High Intensity Bunched Beams 159
 
  • G. Franchetti, S. Aumon, F. Kesting, H. Liebermann, C. Omet, D. Ondreka, R. Singh
    GSI, Darmstadt, Germany
 
  Mitigation of periodic resonance crossing induced by space charge is foreseen  via classic resonance compensation. The effect of the space charge is, however,  not obvious on the effectiveness on the compensation scheme.  In this proceeding we report on an experimental campaign performed at SIS18  in an attempt to investigate experimentally the effect of space charge on the resonance  compensation. The experimental results and their consequences are discussed  through numerical simulations.   
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-MOPWA028  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)