Author: Araki, S.
Paper Title Page
TUBC1 Recent Progress and Operational Status of the Compact ERL at KEK 1359
 
  • S. Sakanaka, M. Adachi, S. Adachi, T. Akagi, M. Akemoto, D.A. Arakawa, S. Araki, S. Asaoka, M. Egi, K. Enami, K. Endo, S. Fukuda, T. Furuya, K. Haga, K. Hara, K. Harada, T. Honda, Y. Honda, H. Honma, T. Honma, K. Hosoyama, K. Hozumi, A. Ishii, X.J. Jin, E. Kako, Y. Kamiya, H. Katagiri, H. Kawata, Y. Kobayashi, Y. Kojima, Y. Kondou, A. Kosuge, T. Kume, T. Matsumoto, H. Matsumura, H. Matsushita, S. Michizono, T. Miura, T. Miyajima, H. Miyauchi, S. Nagahashi, H. Nakai, H. Nakajima, N. Nakamura, K. Nakanishi, K. Nakao, K.N. Nigorikawa, T. Nogami, S. Noguchi, S. Nozawa, T. Obina, T. Ozaki, F. Qiu, H. Sagehashi, H. Sakai, S. Sasaki, K. Satoh, T. Shidara, M. Shimada, K. Shinoe, T. Shioya, T. Shishido, M. Tadano, T. Tahara, T. Takahashi, R. Takai, H. Takaki, T. Takenaka, O. Tanaka, Y. Tanimoto, N. Terunuma, M. Tobiyama, K. Tsuchiya, T. Uchiyama, A. Ueda, K. Umemori, J. Urakawa, K. Watanabe, M. Yamamoto, Y. Yamamoto, Y. Yano, M. Yoshida
    KEK, Ibaraki, Japan
  • E. Cenni
    Sokendai, Ibaraki, Japan
  • R. Hajima, S. Matsuba, M. Mori, R. Nagai, N. Nishimori, M. Sawamura, T. Shizuma
    JAEA, Ibaraki-ken, Japan
  • J.G. Hwang
    KNU, Deagu, Republic of Korea
  • M. Kuriki
    Hiroshima University, Graduate School of Science, Higashi-Hiroshima, Japan
  • Y. Seimiya
    HU/AdSM, Higashi-Hiroshima, Japan
 
  Funding: Work supported by the Photon and Quantum Basic Research Coordinated Development Program from the MEXT, and by the MEXT grant for promoting technology for nuclear security.
The Compact Energy Recovery Linac (cERL) is a superconducting test accelerator aimed at establishing technologies for the ERL-based future light source. After its construction during 2009 to 2013, the first CW beams of 20 MeV were successfully transported through the recirculation loop in February 2014*. Then, initial tuning of beams and evaluations of beam properties were carried out. From September to December in 2014, we are constructing a Laser Compton Scattering (LCS) source** which aims at demonstrating technology for the future high-flux quasi-monochromatic gamma-ray source. In the next run of the cERL, which begins at the end of January 2015, we plan such works as an increase in the beam current (from 10 uA to 100 uA), commissioning of the LCS source, and sustained tuning of beams for lower emittance. We will report up-to-date results of these developments.
* N. Nakamura et al., IPAC2014, MOPRO110; S. Sakanaka et al., LINAC14, TUPOL01.
** R. Nagai et al., IPAC2014, WEPRO003.
 
slides icon Slides TUBC1 [2.679 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUBC1  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPWA065 Generation of Multi-bunch Beam with Beam Loading Compensation by Using RF Amplitude Modulation in Laser Undulator Compact X-ray (LUCX) 1576
 
  • M.K. Fukuda, S. Araki, Y. Honda, N. Terunuma, J. Urakawa
    KEK, Ibaraki, Japan
  • K. Sakaue, M. Washio
    RISE, Tokyo, Japan
 
  We have developed a compact X-ray source based on inverse Compton scattering between an electron beam and a laser pulse stacked in an optical cavity at Laser Undulator Compact X-ray (LUCX) accelerator in KEK. The accelerator consists of a 3.6 cell photo-cathode rf-gun, a 12cell standing wave accelerating structure and a 4-mirror planar optical cavity. Our aim is to obtain a clear X-ray image in a shorter period of times and the target flux of X-ray is 1.7x107 photons/pulse with 10% bandwidth at present. To achieve this target, it is necessary to increase the intensity of an electron beam to 500nC/pulse with 1000 bunches at 30 MeV. Presently, we have achieved the generation of 24MeV beam with total charge of 600nC in 1000bunches with beam-loading compensation by using the delta T method and the amplitude modulation of RF pulse. The bunch-by-bunch energy difference is within 1.3% peak to peak. We will report the results of the multi-bunch beam generation and acceleration in this accelerator.
This work was supported by Photon and Quantum Basic Research Coordinated Development Program from the Ministry of Education, Culture, Sports, Science and Technology, Japan.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPWA065  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPWA066 Development of a High Average Power Laser for High Brightness X-ray Source and Imaging at cERL 1579
 
  • A. Kosuge, T. Akagi, S. Araki, Y. Honda, N. Terunuma, J. Urakawa
    KEK, Ibaraki, Japan
  • R. Hajima, M. Mori, T. Shizuma
    JAEA, Ibaraki-ken, Japan
  • R. Nagai
    JAEA/ERL, Ibaraki, Japan
 
  Funding: This study is supported by Photon and Quantum Basic Research Coordinated Development Program of MEXT, Japan.
High brightness X-rays via laser-Compton scattering (LCS) of laser photons stored in an optical cavity by a relativistic electron beam is useful for many scientific and industrial applications such as X-ray imaging. The construction of compact Energy Recovery Linac (cERL) is now in progress at KEK to generate low-emittance and high-current electron beams. In order to demonstrate the generation of high brightness LCS X-rays, it is necessary to develop a high average power injection laser and an optical four-mirror ring cavity with two concave mirrors which is used to produce a small spot laser beam inside the cavity. In this presentation, we will show the result of the development of the high average laser system, the LCS X-rays generation, and the X-ray imaging.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPWA066  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPJE002 Demonstration of High-flux Photon Generation from an ERL-based Laser Compton Photon Source 1607
 
  • R. Nagai, R. Hajima, M. Mori, T. Shizuma
    JAEA, Ibaraki-ken, Japan
  • T. Akagi, S. Araki, Y. Honda, A. Kosuge, N. Terunuma, J. Urakawa
    KEK, Ibaraki, Japan
 
  A high-flux photon source from the laser Compton scattering (LCS) by an electron beam in an energy-recovery linac (ERL) is a key technology for a nondestructive assay system to identify nuclear materials. In order to demonstrate accelerator and laser technologies required for a LCS photon generation, a LCS photon source is under construction at the Compact ERL (cERL). The LCS photon source consists of a mode-locked fiber laser and a laser enhancement cavity. Flux monitors and a data aqcuisition system are also under construction. The commissioning of the LCS photon source will be started in February 2015 and LCS photon generation is scheduled in March 2015. The demonstration result of the LCS photon source will be presented in detail.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPJE002  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPJE011 Laser-Compton Scattering X-ray Source Based on Normal Conducting Linac and Optical Enhancement Cavity 1635
 
  • K. Sakaue, M. Washio
    Waseda University, Tokyo, Japan
  • S. Araki, M.K. Fukuda, Y. Honda, N. Terunuma, J. Urakawa
    KEK, Ibaraki, Japan
 
  Funding: Work supported by Photon and Quantum Basic Research Coordinated Development Program from the Ministry of Education, Culture, Sports, Science and Technology, Japan.
We have been developing a compact X-ray source via laser-Compton scattering (LCS) at KEK-LUCX (Laser Undulator Compact X-ray source) facility. The LUCX system is based on S-band normal conducting linac with an energy of 30 MeV and optical enhancement cavity for photon target. As a photon target, we invented a burst mode laser pulse storage technique for a normal conducting linac, which enables to store the high power laser pulses at the timing of electron bunchs. The peak storage power exceeds to more than 250 kW with 357 MHz repetition. Electron linac is under operation with multi-bunch mode, 1000 bunches/train with 600 pC charge in each bunches. We have succeeded to produce 1000 pulse/train LCS X-ray train. Combining high repetition rate electron linac and burst mode optical enhancement cavity, more than 109 ph./sec/10%b.w. flux would be possible. In this conference, the introduction of our test facility LUCX, recent expermental results, and future prospective including normal conducting LCS X-ray source will be presented.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPJE011  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)