JACoW logo

Joint Accelerator Conferences Website

The Joint Accelerator Conferences Website (JACoW) is an international collaboration that publishes the proceedings of accelerator conferences held around the world.


RIS citation export for THPF018: Simulation Studies of Plasma-based Charge Strippers

TY - CONF
AU - Haas, O.S.
ED - Henderson, Stuart
ED - Akers, Evelyn
ED - Satogata, Todd
ED - Schaa, Volker R.W.
TI - Simulation Studies of Plasma-based Charge Strippers
J2 - Proc. of IPAC2015, Richmond, VA, USA, May 3-8, 2015
C1 - Richmond, VA, USA
T2 - International Particle Accelerator Conference
T3 - 6
LA - english
AB - Calculations on the charge state distributions in different charge stripping media are presented. The main focus of this work is the width and peak efficiency of the final charge state distribution. For equal number densities fully-stripped plasma stripping media achieve much higher charge states than gas stripping media of the same nuclear charge. This is due to the reduced electron capture rates of free target electrons compared to bound target electrons. Furthermore, targets with low nuclear charge like hydrogen achieve higher charge states than targets with high nuclear charge like nitrogen in the case of both a plasma and a gas target. Equal final mean charge states can thus be achieved with lower density for plasmas and targets with low nuclear charge. The widths of the charge state distributions are very similar, slightly smaller for plasmas due to the different scaling of the dielectronic recombination rate. In comparison with calculations and measurements published in literature this work underestimates the width of targets with higher nuclear charge like, e.g., nitrogen gas. This is mainly due to the omission of multiple loss processes in the presented calculations. In the future we intend to expand the methods and models used in this work to improve the agreement with different measurements on charge state distributions in plasmas and gases.
PB - JACoW
CP - Geneva, Switzerland
SP - 3721
EP - 3723
KW - target
KW - plasma
KW - electron
KW - ion
KW - heavy-ion
DA - 2015/06
PY - 2015
SN - 978-3-95450-168-7
DO - 10.18429/JACoW-IPAC2015-THPF018
UR - http://jacow.org/ipac2015/papers/thpf018.pdf
ER -