Low Emittance Upgrade for Existing Mid-size Light Source

Seunghwan Shin

(Pohang Accelerator Laboratory, Korea)

2014. 6. 18

5th International Particle Accelerator Conference

- 1. Introduction to Light Source.
- 2. 3rd Generation Light Source in Operation.
- 3. Low Emittance Upgrade for Existing Mid-size Light Source.
 USR upgrade (Many facilities on study)
 - Practical upgrade (Three upgrade cases: SPEAR-3, PLS-II, ALS)
- 4. Summary.

(Courtesy of L. Nadolski) Nearly 80 facilities producing synchrotron light

LER2013, Oxford, July 8th-11h, 2013

- 1. 1st Generation SR Source.
 - Parasitic operation: 1961, electron synchrotron UV source at NBS
 - 1974, SOR (1st ring designed for SR). SPEAR (1st x-ray beam line)
- 2. 2nd Generation SR Source.
 - dedicated for SR with dipole source.
 - PF, NSLS, BESSY, SPEAR-II, SUPER-ACO (1981 ~ 1990)
- 3. 3rd Generation SR Source.
 - High brightness & low emittance
 - ESRF (1st 3GLS in 1992), ALS, PLS (1996), APS, SPring-8, ... PLS-II (2011)
 - Undulator source.
- 4. 4th Generation SR Source.
 - Higher brightness, higher coherence, shorter bunches.
 - LCLS, SCSS, Euro-XFEL, Swiss-XFEL, PAL-XFEL, ...
- 5. Ultimate Storage Ring (Existing 3rd GLS, New LS)
 - Diffraction limited emittance, high average brightness, stable CW operation.
 - MBA and small horizontal aperture

PAL The progression of bright x-ray sources

PAL 3rd Generation Light Sources in Operation

Most 3rd generation light sources are in the intermediate energy range and mid-size ring. Execption

- ESRF, APS, SPring-8 in the early part
- PETRA-III: Converted source from a former high energy physics machine.
- NSLS-II: "Green field" project

PAL Technology and Experience on 3rd Generation Sources

- 1. Extended spectral range.
 - Around 3 GeV operation energy. (High flux, 6-12 keV)
 - Reduce undulator period. (In-vacuum undulator)
- 2. Stability.
 - Sophisticated feedback systems. (no longer submicron stability but 200 ~ 300 nm.
 - Top-up operation. (mandatory)
- 3. High availability (Target: 98~99% with 96% as low limit, MTBF: 50~100 h)
 Reliable software and hardware.
- 4. Advanced diagnostics.
 - Bunch motion analysis from post-mortem.
 - Beam position monitor electronic
- 5. SC cavities.
- 6. Automated beam-based optimization.
- 7. Alignment precision.
- 8. Small vacuum pipe.
- 9. Magnet technology.
- 10. Modeling improvement.

Performance of 3rd Generation Light Source

Parameters	Design	Achieved as of Oct 2013	
Energy (GeV)	2.75	2.739	
Emittance H (nm•rad)	3.9	3.9	
Coupling, E_V/E_H	<1%	0.7% (w/o corr.) 1% (w/ V dispersion)	
Current Multibunch mode (mA)	500	500 (430 for Users operation)	
Beam Lifetime (h)	16 h	14h @ 500 mA	

5 Modes of Operation for the Users (All in Top-up injection)

5 feedbacks simultaneously in operation: TFB, SOFB, FOFB, BTUNE-FB, Coupling.-FB

PAL? Performance of 3rd Generation Light Source

PAUL SCHERRER INSTITUT

(Courtesy of A. Streun)

9

SLS world record for smallest vertical emittance Coupling minimization at SLS

- M. Aiba et al., Ultra low vertical emittance at SLS through systematic and random optimization, NIM A 694 (2012), 133-139
- observable: vertical beam size from monitor
- knobs: 24 skew quadrupoles
- random optimization: trial & error (small steps)
- Start: model based correction: ε_y = 1.3 pm
- 1 hour of random optimization $\epsilon_y \rightarrow 0.9 \pm 0.4 \text{ pm}$
- Measured coupled response matrix off-diagonal terms were reduced after optimization.
- Model based correction limited by model deficiencies rather than measurement errors.

H emittance vs V emittance

Transverse coherence requires small emittance Diffraction limit at $\lambda = 0.1$ nm requires 8 pm emittance

 $-\geq 3$

4π

PAL New 3rd Generation Light Source

- 1. NSLS-II
 - "Green field" project with ring size 792 m.
 - 30 Double Bend Cell.
 - Emittance in X with DWs < 1 nm. diff. limited emittance in Y at 10 keV.
 - Finished commissioning Phase-1 25 mA Beam store (April 2014)
 - Start commissioning Phase-2 with SCRF.
- 2. MAX-IV
 - First 3 GLS using MBA.
 - 20 7BA (zero dispersion in SS) cell
 - 3 GeV, 528 m, 0.34 nm emittance
 - Small magnet bores
 - NEG pumped round chamber in arcs.
 - Commissioning in early 2015

PALP Ultimate Storage Ring: Large size ring

1. SPring-8 upgrade study

(Courtesy of Y. Shimosaki)

2. APS (~100 pm), ESRF (~150 pm)

Ultimate Storage Ring: Mid-size ring

- 1. SOLEIL upgrade study
 - 1) Keep BL and SS.
 - 2) 520 pm emittance @ 2.75 GeV
 - 3) Maximum gradient 50 T/m.
 - 4) Reasonable chromaticities.
 - 5) Combined function dipole.

R. Nagaoka et al. Study Of Lower Emittance Optics Using Multi-Bend Achromat Lattice At SOLEIL. In Pro- ceedings of the fourth International Particle Accelerator Conference, pages 76–78, Shanghai, China, May 2013.

Lattice and envelop functions for the SDL-SDM (left) and SDM-SDC-SDM cells (right), altogether representing 1/8th of the ring

PAL Ultimate Storage Ring: Mid-size ring

- 2. DIAMOND upgrade study
 - 1) 2750 -> 280 pm emittance @ 3 GeV
 - 2) Modified 4BA.
 - 3) Doubling capacity.
 - 4) Feasibility studies for the current ring
 - replacing the existing cell2 with a Modified 4BA.
 - serves as a prototype for low emittance lattice upgrade.

3. ALS upgrade study

- 1) MBA (Similar to MAX-IV concept)
- 2) 50 pm at 2 GeV in 200 m ring.
- 3) Emittance with IBS < 70 pm at 400 mA
- 4) Keeping the existing straight.
- 5) High magnet strength
 - 80 T/m for quadrupole
 - 3000 T/m^2 for sextupole

PAL Ultimate Storage Ring: Mid-size ring

4. SLS upgrade study

5.

1) Keep all beam lines.

SPEAR-3 upgrade study

1) 234 m size for 3 GeV.

4) Low scaling emittance.

- $N_{dip} \sim C/E$ (B-field limit)

2) 11.5 m celll is short.

3) 0.7 nm emittance

- $\varepsilon_x \sim E^2 / N_{dip}^3$

- $\varepsilon_{\rm x} \sim E^5/C^3$

- 2) re-use girder, injector system
- 3) 100 ~ 150 pm @ 2.4 GeV in 288 m.
- 4) Longitudinal gradient super bend
- 5) On study for 1^{st} budget in 2017.

- 1. Lower Emittance: Damping wiggler, Magnet type
- 2. Dynamic aperture
 - 1) Strong sextupole.
 - 2) Beam injection
 - Multipole injection (but still off-axis injection)
 - On-axis injection
- 3. Round beam
 - 1) Diffraction limit in H and V plane.
 - 2) Simplication of the optics in beam line.
- 4. Beam current: IBS, Harmonic cavity
- 5. High strength magnet
 - 1) Quadrupole: MAX IV (40 T/m), USR study (~ 100 T/m)
 - 2) Sextupole: MAX IV (4000 T/m²), USR study (~ 13000 T/m²)
- 6. Constraint existing ring and BLs.
- 7. Schedule and budget.

PAL Low Emittance Upgrade for Existing Mid-size Ring

- 1. SOLEIL, DIAMOND, SLS, ALS etc. on study for USR
- 2. Many 3rd GLS facilities have potential capacity to be upgraded.
- 3. SPEAR-3 (2004) / PLS-II (2011) / ALS (2013, partial replacement)

1. Major Parameter

		1
	SPEAR 2	SPEAR 3
Energy	3 GeV	3 GeV
Current	100 mA	500 mA
Emittance (w/ID)	160 nm-rad	18 nm-rad
RF frequency	358.5 MHz	476.3 MHz
RF gap voltage	1.6 MV	3.2 MV
Lifetime @ Imax	30 h	>17h
Critical energy	4.8 keV	7.6 keV
Tunes (x,y,s)	7.18,5.28,.019	14.19,5.23,.007
e- σ (x,y,s) - ID	2.0,.05,23 mm	0.43,0.3,4.9 mm
e- σ (x,y,s)-dipole	.79,.20,23 mm	.16,.05,4.9 mm
Injection energy	2.3 GeV	3 GeV

- 2. 1st Existing ring Upgrade (replacement from 2nd GLS to 3rd GLS)
- 3. 4 bending BLs and 7 ID BLs
- 4. Emittance (~9 fold reduction)
- 5. 7 month dismantling and installation and 5 month commissioning.
- 6. Completion on schedule.
- 7. Budget: 58 M\$

1. Brightness improvement: $\sim 18 \times \text{total}$

(Courtesy of J. Safranek)

- 2. Requirement for 6 nm ε_x : Must capture the injected beam.
 - Improve dynamic aperture: Sextupole PS from 4 to 10.
 - Septum wall reduction and improvement of injected beam control.

(Courtesy of H. Tarawneh)

Project History

Existing

Correctors

Received funding (summer 09)

ALS

Comprehensive project review (12/09)

SF.

- Awarded magnet contract (9/10)
- Detailed magnet design review (3/11)
- Prototypes of 3 magnet types complete (12/11)
- First set of 13 production magnets shipped (4/12)
- All magnets received (8/12)
- Pre-Installed 13 of 48 sextupoles (1/13)
- Remaining magnets and power supplies installed (3/13)

SF 2 QFA

User operation in high brightness mode (2.0 nm emittance) – since (4/13)

ENERGY

Sextupole / Corrector Multimagnets

(Courtesy of H. Tarawneh)

Commissioning Results

- Installation completed on time (Mar/Apr 2013)
- Quick Commissioning Progress
 - Benefit of pre-installation and commissioning: orbit feedbacks, detuned upgrade lattice
 - Managed to deliver low emittance beam during BLC shifts – and continue into user operations
 - 3 months ahead of schedule
- Beamlines able to resolve brightness increase
- Reliable operation (no faults due to new lattice or hardware so far)

ENERGY

<u>AIS</u>

PAL? PLS Upgrade (PLS-II) : Project overview

- 1. Period : 3 year (One year break in user service)
- 2. Budget : 100 M \$
- 3. Critical path : All PLS beam lines (30) should be operated in PLS-II after one year shutdown.

Parameter	PLS	PLS-II
Beam Energy (GeV)	2.5	3.0
Beam emittance (nm)	18	5.8
Beam Current (mA)	200	400
IDs	10	20
Tune (H/V)	14.28 / 8.18	15.24 / 9.17
Natural Chromaticity (H/ V)	-23.36 / -18.19	-32.95 / -14.88
Harmonic Number	468	470
Circumference	280	281
RF voltage (MV)	NC/2.0	SC (3)/3.3
Lattice	TBA	DBA
Operation	Decay	Тор-Uр
Brightness	~2×10 ¹⁸	~10 ²⁰

PAL? PLS Upgrade (PLS-II) : Lattice Design

Design Challenges

- biggest challenge is the doubling of ID SSs.

- ring shielding wall cannot be changed / moved (all possible beam lines should aim at convenient penetration through the ring shielding wall.

- 1. Adjustment of Ring Geometry
 - to accommodate easy transit to experimental hall through existing shielding wall.
 - need to expand avg. ring radius by 0.20 m.
 - rotate ring against beam direction by 1.5 degree.
 - causing the need for small adjustments in injection line.

- 2. Vacuum
 - Total synchrotorn radiation power is increased from 110 kW to 417 kW.

$$P[kW] = 88.463 \cdot \frac{E[GeV]^4}{\rho[m]} \cdot I[A]$$

- To accommodate such high heat flux in the limited space, complicated design of several different types for the photon absorbers is unavoidable .

- 3. Radiation Shielding.
 - No change of storage ring tunnel from PLS to PLS-II.
 - Additional 10 cm local Lead block (beam height)
- 4. Magnet. (Reuse quadrupoles and sextupoles)

PLS Upgrade (PLS-II) : Beam Line Issue

- 1. DCM development
- 2. Beam line allocation.
 - BM BL-> ID BL : 6 BLs (SAXS, Nanoscopy, etc.)
 - New ID BL : 6 BLs
- 2. Beam line dismantling and installation. (Total 30 BLs)

1. User Statistics.

- 2. Block Beamtime Program in foreign facilities.
 - Budget U\$ 100,000.
 - In total of 213 experiments.
 - PF, RIKEN, SSRF, NSRL.

- 1. There is no argument that 3rd generation light sources have been operated and developed successfully for 20 years.
- Most technologies related with 3rd generation light sources are matured.
 for instance, no revolution is needed but steady improvement on what already achieved for beam stability and feedback system)
- 3. Now it's time to push horizontal emittance of existing ring to ultimate regime (diffraction limited ring).
- 4. Some cases of low emittance upgrade for existing mid-size ring imply
 - Short break in user service. (On schedule operation)
 - Performance increase.
 - (Not only emittance reduction but also energy, IDs, stability, current, etc.)
 - Relatively low budget. (Same building and utility)

This talk was possible thanks to the contribution of

- L. Nadolski (SOLEIL)
- J. Safranek (SPEAR-3)
- Y. Shimosaki, T. Nakamura (SPring-8)
- T. Shaftan, J. Choi (NSLS-II)
- L. Emery (APS)
- A. Streun, M. Boege (SLS)
- C. Kuo (TPS)
- H. Tarawneh (ALS)
- R. Bartolini, B. Shingh (Diamond)
- H. Wiedemann (SLAC)